Association of British Clinical Diabetologists Birmingham May 201

Diabetes, diabetes treatment and cancer risk: the epidemiology

Andrew G Renehan PhD FRCS

Hunterian Professor (2011/2012)

Department of Surgery, The Christie NHS Foundation Trust.

Clinical and Experimental Pharmacology Group, PICR

School of Cancer and Enabling Sciences, University of Manchester

The University of Manchester

I report the following potential duality/dualities of interest in the field covered by my lecture:

- Advisory Board Panels
- Speaker Honoraria
- Research Support

Funded by: Novo Nordisk; Sanofi Pasteur MSD

Andrew G Renehan

• Part 1: Epidemiology

Renehan

Part 2: X10 story & updates
 Russell-Jones

- Part 3: IGF-I cancer biology
 Renehan
- Part 3: clinical implications
 Renehan

Michael Jackson had been due to play 50 concert dates in the UK this summer

Iran: Night Raids Terrorize Civilians

Security Forces Wreck Homes, Destroy Property to Stop Protest Chants; News Access Curtailed

JUNE 26, 2009

(New York) - Iran's paramilitary Basij are carrying out brutal nighttime raids, destroying property in private homes and beating civilians in an attempt to stop nightly protest chants, Human Rights Watch said today. Human Rights Watch also said the "While most of the world's attenti Iranian authorities are confiscating satellite dishes focused on the be from private homes to prevent citizens from seeing foreign news.

WSJ Blogs >

GENTY INGGES

Health Blog

WSJ's blog on health and the business of health.

Email Printer Friendly Permalink Share: Share: Yahoo! Buzz •

New data published today suggest that there is a "possible link"

between French drug maker Sanofi-Aventis's Lantus insulin for diabetes and a higher risk of cancer, according to Diabetologia,

European Association for the Study of Diabetes, which

the journal in which the data were published.

OTHER MATERIAL:

UNE 28. 2009. 8:09 PM ET Study: Sanofi's Lantus Insulin Has Possible Cancer Link

Stark footage of what appear to be Basiji night raids

Station and and a state

the stid the concern was specific to artificial insulin like

Search Health Blog

States Should Plan for « H1N1 Vaccinations as

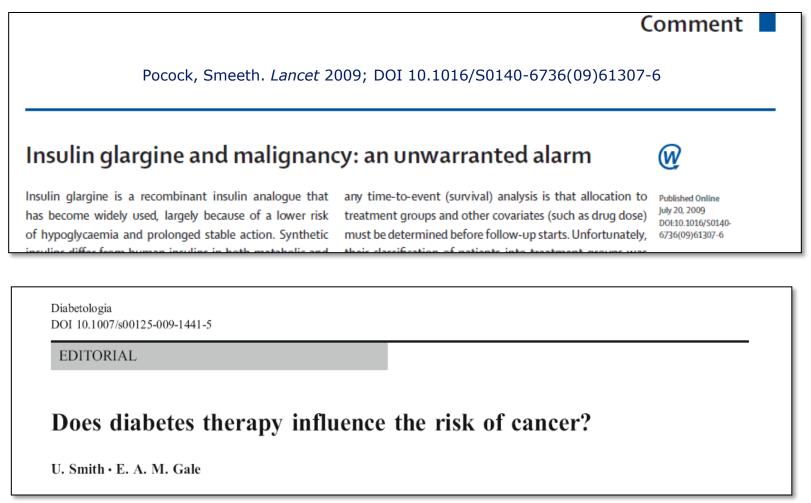
Numbers Rise More

Human Rights Watch reporting on Iran

The 'big' four

Table 3 Studies of insulin analogues and incident cancer risk							
Study	Insulin analog and comparator (number of patients)	Total no. of all cancers (mean FU)	All-cancer risk*	Sub-group analyses	Cancer subtotals (analog)	Sub-group risks	
Observational studie	95						
Hemkens et al. (2009) ¹⁵⁰	Glargine (<i>n</i> =23,855) and human insulin (<i>n</i> =95,804)	5,009 (1.63 years)	1.18 (1.08–1.28)	Daily dose: 10 IU Daily dose: 30 IU Daily dose: 50 IU	NR NR NR	1.09 (1.00–1.19) 1.19 (1.10–1.30) 1.31 (1.20–1.42)	
Currie <i>et al.</i> (2009) ¹⁴⁹	Glargine (n=2,286) and human insulin (n=5,748)	2,106 (2.9 years)	0.81 (0.59–1.11)	Breast	305 (10)	0.86 (0.42–1.75)	
Jonasson et al. (2009) ¹⁵¹	Glargine (<i>n</i> =5,970) and other insulins (<i>n</i> =88,555)	2,348 (NR)	1.06 (0.90–1.25)	Breast Prostate Gastrointestinal	208 (25) 464 (32) 454 (24)	1.97 (1.29–3.00) 1.26 (0.88–1.80) 0.91 (0.61–1.38)	
Colhoun <i>et al.</i> (2009) ¹⁴⁸	Glargine (n=477) [‡] and other insulins (n=36,254) [‡]	715 (34,441 person-years)	1.73 (0.98–3.05)	Breast Prostate Colorectal Lung	92 (6) 48 (1) 109 (3) 149 (4)	3.65 (1.05–12.68) 1.16 (0.16–8.50) 1.43 (0.45–4.57) 1.43 (0.53–3.88)	

Clayton, Banerjee, Murray, Renehan Nat Rev Endocrinol 2010


 Classification of patients into treatment groups based on follow-up information

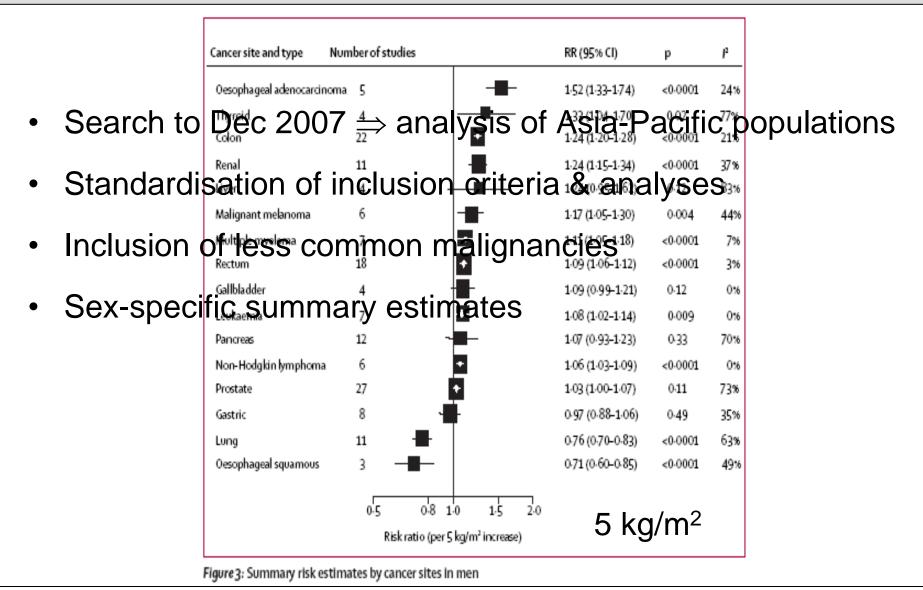
 Insulin dose calculated as the mean during followup, then included in survival analysis as if it were a baseline covariate

- Short follow-up
- Absence of key confounders (e.g. BMI, smoking)
- Reference group classifications/problems
- Small numbers for individual cancer types

Editorials

A case to be answered

• Not a surprise to the cancer community


- Obesity is a common shared risk factor
- Diabetes \Rightarrow \uparrow risk of incidence & mortality
- Glucose environment ? relevant
- Metformin may be cancer protective (multi-actions in cancer)
- Insulin analogues have a 'IGF-I look'

Obesity & cancer

BMI, cancer risk and men

© Paterson Institute for Cancer Research

Renehan et al. Lancet 371: 569-578, 2008

BMI, cancer risk and women

Cancer site and type Nu	mber of studies		RR (95% CI)	р	l²	
Endometrium	19		1.59 (1.50-1.68)	<0.0001	77%	
Gallbladder	2		1.59 (1.02-2.47)	0.04	67%	
Oesophageal adenocarcinom	a 3		1-51 (1-31-1-74)	<0.0001	0%	
Renal	12	•	1-34 (1-25-1-43)	<0.0001	45%	
Leukaemia	7		1-17 (1-04-1-32)	0.01	80%	
Thyroid	3	-	1-14 (1-06-1-23)	0.001	5%	
Postmenopausal breast	31		1-12 (1-08-1-16)	<0.0001	64%	
Pancreas	11		1-12 (1-02-1-22)	0.01	43%	
Multiple myeloma	6	•	1-11 (1-07-1-15)	<0.0001	0%	
Colon	19	-	1-09 (1-05-1-13)	<0.0001	39%	
Non-Hodgkin lymphoma	7		1.07 (1.00-1.14)	0.05	47%	
Liver	1		1.07 (0.55-2.08)			
Gastric	5.	-∎	1.04 (0.90-1.20)	0.56	4%	
Ovarian	13	-	1.03 (0.99-1.08)	0.30	55%	
Rectum	14	•	1.02 (1.00-1.05)	0.26	0%	
Malignant melanoma	5		0.96 (0.92-1.01)	0.05	0%	
Premenopausal breast	20 -	3	0.92 (0.88-0.97)	0.001	39%	
Lung	6 -	-	0.80 (0.66-0.97)	0.03	84%	
Oesophageal squamous	2 —		0-57 (0-47-0-69)	<0.00 01	60%	
0.5 0.8 1.0 1.5 2.0 5 kg/m ² Risk ratio (per 5 kg/m ² increase) 5 kg/m ²						

Figure 4: Summary risk estimates by cancer sites in women

Renehan et al. Lancet 371: 569-578, 2008

O BMI & cancer: sex-specific associations

	Studies	Studies Cases			Risk ratio in men*	Risk ratio in women*	nen* p value†	
	Men	Women	Men	Women				
Colon cancer								
All studies	22	19	22440	20 97 5	1.24 (1.21–1.28)	1.09 (1.05-1.14)	<0.0001	
Studies with both sexes	13	13	17 495	19256	1.24 (1.18–1.31)	1.08 (1.02-1.34)	0.001	
All but one study ⁴⁶	21	18	8635	4337	1.26 (1.21–1.30)	1.10 (1.06–1.15)	<0.0001	
Rectal cancer								
All studies	18	14	14894	9052	1.09 (1.06-1.12)	1.02 (0.99-1.04)	0.001	
Studies with both sexes	11	11	11035	8644	1.08 (1.05-1.11)	1.01 (0.98–1.04)	0.003	
All but one study ⁴⁶	17	13	5712	1560	1.09 (1.05-1.15)	1.05 (0.99–1.12)	0.32	

*Risk ratio per 5 kg/m² increase in BMI (95% CI). †Meta-regression analysis with univariable model of sex. ‡Meta-regression analysis with multivariable models including the method of BMI determination (measured or self-reported)-the extent of cancer-site specific risk factor adjustment-and geographic region. We analysed only cancer sites with more than 10 studies that included both sexes.

Table 2: Comparisons of risk ratios in men and women

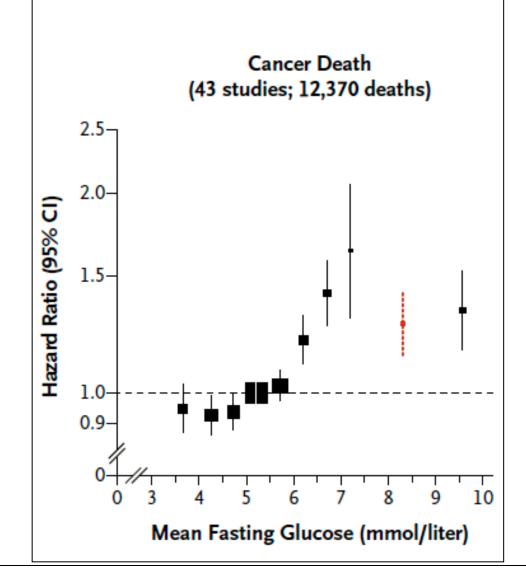
Renehan et al. Lancet 371: 569-578, 2008

Metabolic syndrome (syndrome X)

- Central obesity
- High blood pressure
 - High triglycerides
 - Low HDLcholesterol
 - Insulin resistance

Oiabetes – cancer incidence & mortality

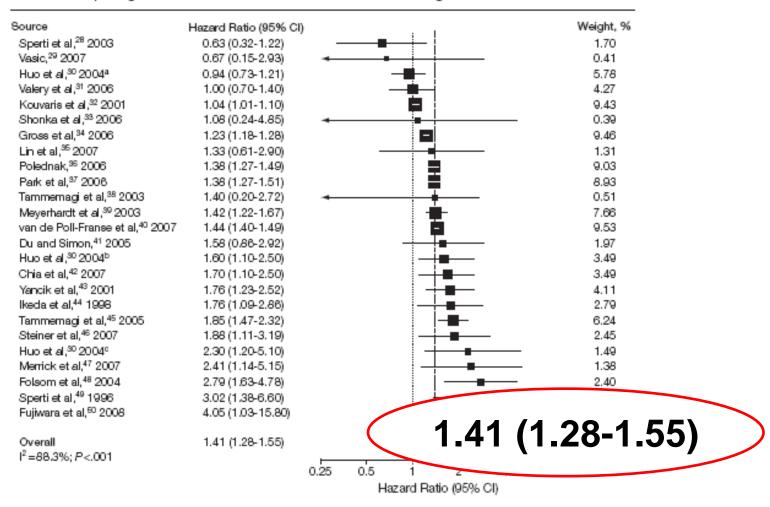
Diabetes and incident cancer risk


Cancer type	Meta-analysis	Number of cohorts/ number of case- control studies*	Number of cancers	Risk ratio (95% CI)
Breast (all)	Larsson et al, 2007 ⁶	15/5	30407	1.20 (1.12–1.28)
Premenopausal	Larsson et al, 2007 ⁶	Not stated	Not stated	0.91 (0.62–1.34)
Postmenopausal	Larsson et al, 2007 ⁶	Not stated	Not stated	1.16 (1.09–1.24)
Colorectal	Larsson et al, 2005 ⁷	9/6	26306	1.30 (1.20–1.40
Endometrial	Friberg et al, 2007 ⁸	3/13	7596	2.10 (1.93-3.24)
Liver	El-Serag et al, 20069	13/13	Not stated	2.50 (1.93-3.24)
Pancreas	Huxley et al, 200510	19/17	9220	1.82 (1.71–1.94)
Non-Hodgkin lymphoma	Mitri et al, 200811	5/11	Not stated	1.19 (1.07–1.32)
Bladder	Larsson et al, 200612	3/7	Not stated	1.24 (1.08–1.42)
Prostate	Kasper et al, 2006 ¹³	12/7	20373	0.84 (0.76–0.93)

Data are fully adjusted estimates. *Different meta-analyses had substantial heterogeneity in how studies were included. Cohorts included population cohorts and diabetes cohorts; case-control studies ranged from hospital-based to population-based. Diabetes inclusion was heterogeneous: most meta-analyses included studies of patients with type 1 and 2 diabetes (variably defined).

Table: Summary of meta-analyses linking diabetes with cancer risk

Renehan, Smith, Kirkman Lancet 2010, 375:2201-02.


Cancer mortality in type 2 diabetic patients

© Paterson Institute for Cancer Resea Emerging Risk Factors Collaboration NEJM 2011

Cancer in type 2 diabetes & mortality

Figure 2. Meta-analysis and Pooled Hazard Ratio of Long-term, All-Cause Mortality in 23 Studies Comparing Cancer Patients With and Without Preexisting Diabetes Mellitus

Barone et al. JAMA 2008

- Cancer screening
- Delayed diagnosis
- Selection for initial treatment
- Complications of initial treatment
- Peri-treatment mortality
- Selection for adjuvant therapy
- Competing risks for death
- Interactions with therapies

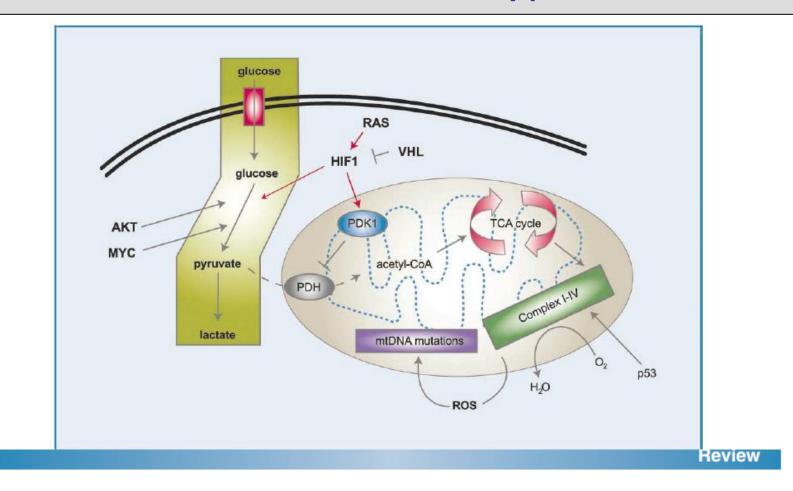
② Cancer screening in diabetic patients

ORIGINAL INVESTIGATION

Reduced Screening Mammography Among Women With Diabetes

Lorraine L. Lipscombe, MD; Janet E. Hux, MD, MSc; Gillian L. Booth, MD, MSc

Arch Intern Med. 2005;165:2090-2095

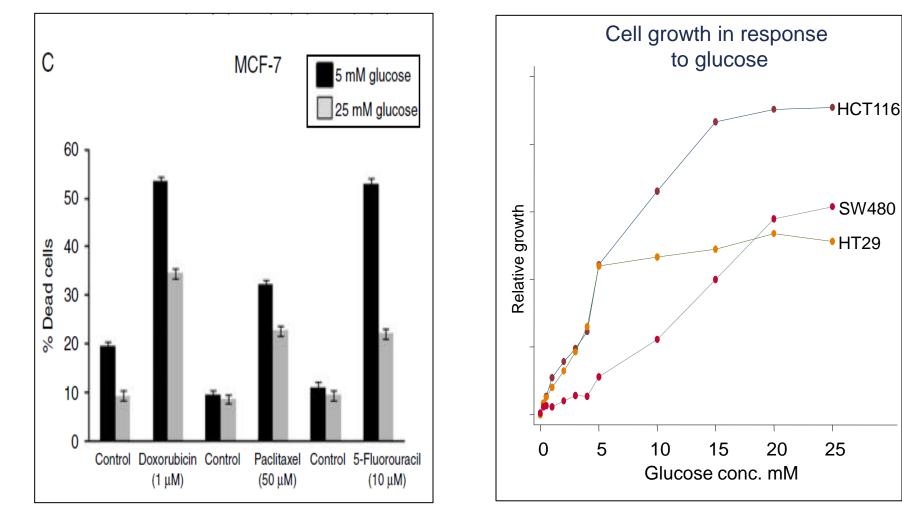

Glucose environment & cancer

ဨ

© Paterson Institute for Cancer Research

Cancer 'sweet-tooth' hypothesis

Cancer's Molecular Sweet Tooth and the Warburg Effect


Jung-whan Kim¹ and Chi V. Dang^{1,2}

¹Division of Hematology, Department of Medicine, ²The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland

Cancer Res 2006

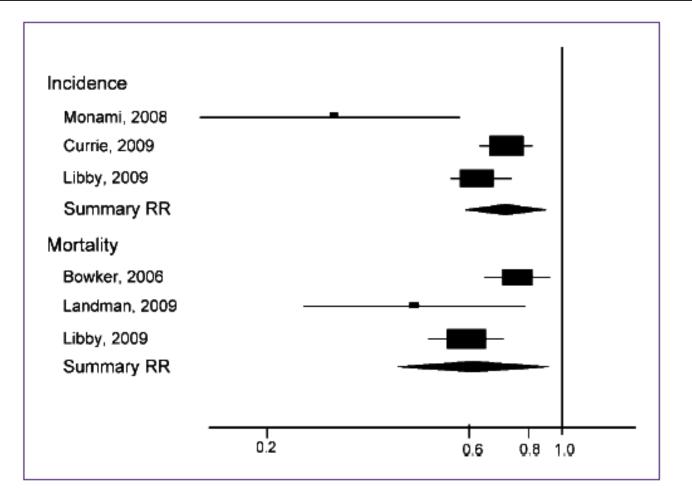
Glucose & cancer cell biology

Zeng Perks Endo-rel-cancers 2010 17: 539-551.

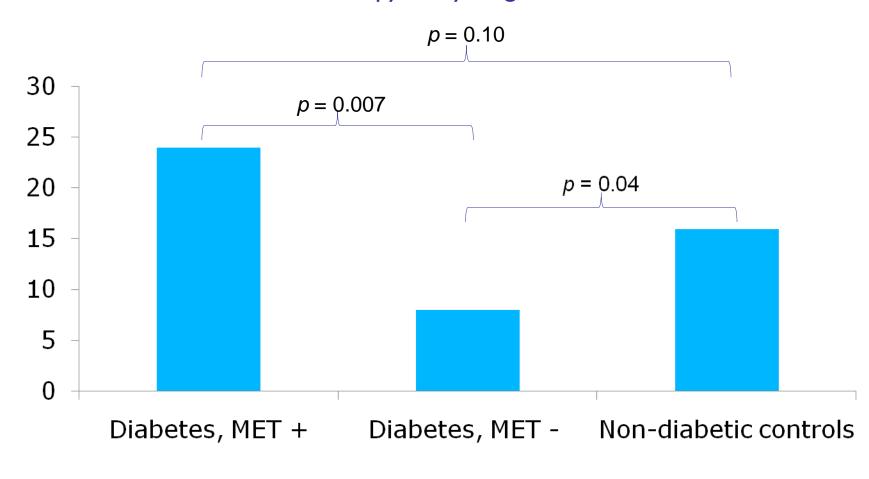
Unpublished Renehan laboratory

Table. Incident Cancers in Large Randomized Trials of Glucose Lowering^a

Trial	No. in Treatment Group	Follow-up, y	Intensive Treatment, % per Year	Control, % per Year	RRR (95% CI)
UKPDS All intensive ^b	2729	10	0.44	0.44	0.98 (0.64-1.52)
Insulin ^b	911	10	0.46	0.48	0.94 (0.55-1.62)
Glyburide	615	10	0.44	0.48	0.91 (0.49-1.67)
Metformin	342	10.7	0.35	0.49	0.71 (0.29-1.76)
VADT ^b	892	5.6	0.48	0.42	1.15 (0.65-2.05)
ACCORD ^b	5128	3.5	1.3	1.2	1.08 (0.90-1.30)
ADVANCEb	5571	5	0.43	0.43	1.00 (0.78-1.29)


Abbreviations: ACCORD, Action to Control Cardiovascular Risk in Diabetes; ADVANCE, Action in Diabetes and Vascular Disease: Preterax + Diamicron Modified Release Controlled Evaluation; CI, confidence interval; RRR, relative risk reduction; UKPDS, United Kingdom Prospective Diabetes Study; VADT, Veterans Affairs Diabetes Trial. ^aNumbers and rates of cancer-related death are shown for all trials except ADVANCE, which shows the numbers and rates of cancer hospitalizations. ^bMore insulin was used in the intensive treatment groups in these comparisons.

Metformin & cancer


Metformin: cancer incidence & mortality

DeCensi et al Cancer Prev Res 2010

Metformin & cancer treatment

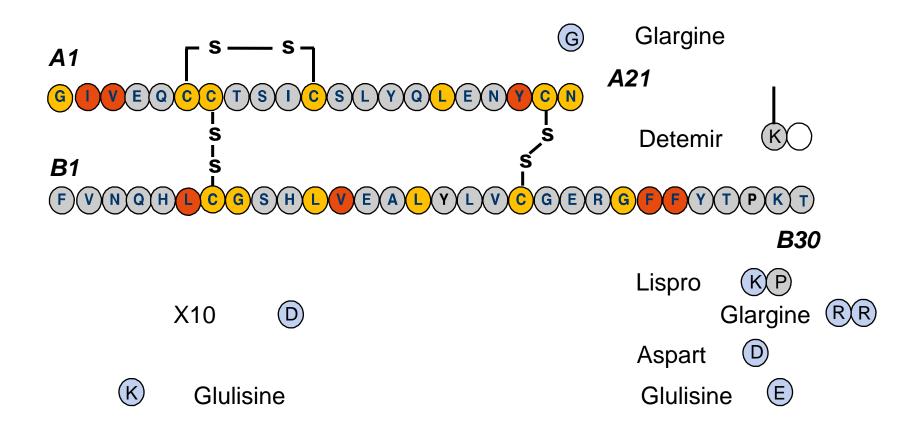
Effect of metformin on pathologic complete response to neoadjuvant chemotherapy, early-stage breast Ca

Jiralerspong et al. J Clin Oncol 2009

- Activation of LKB1/AMPK pathway
- Induction of cell cycle arrest/ apoptosis
- Inhibition of protein synthesis
- Reduction in circulating insulin levels (but not IGF-I)
- Inhibition of the unfolded protein response (UPR)
- Activation of the immune system
- Inhibition of cancer stem cells

Biological mechanisms

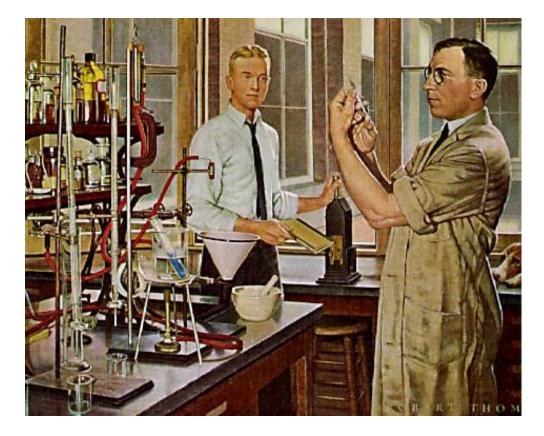
Insulin and insulin-like growth factors (IGFs) Sex steroids and sex-steroid binding globulin Adipokines (e.g. adiponectin and leptin) Nuclear factor κB system/inflammatory cytokines Altered immune response

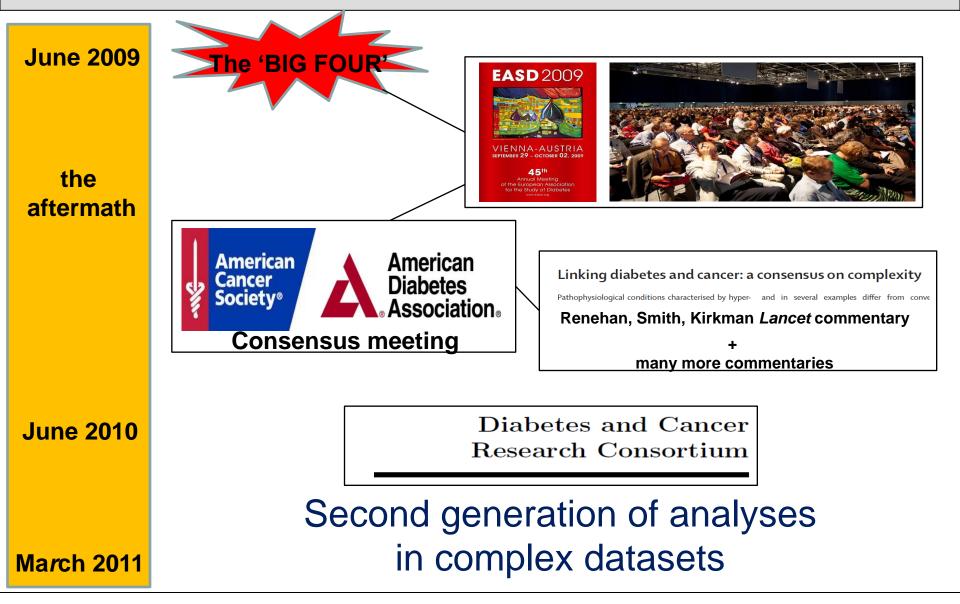

Shared genetic susceptibility

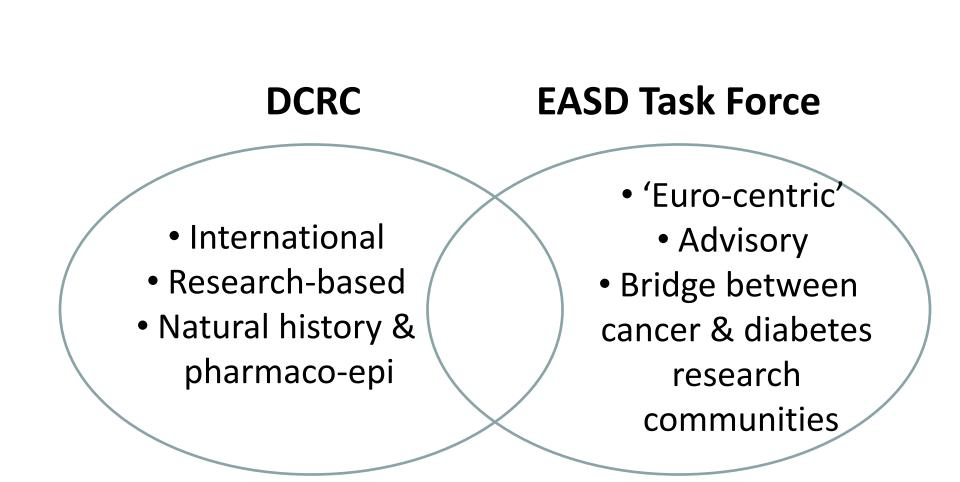
- **Obesity-related hypoxia & angiogenesis**
- Migrating adipose stromal cells

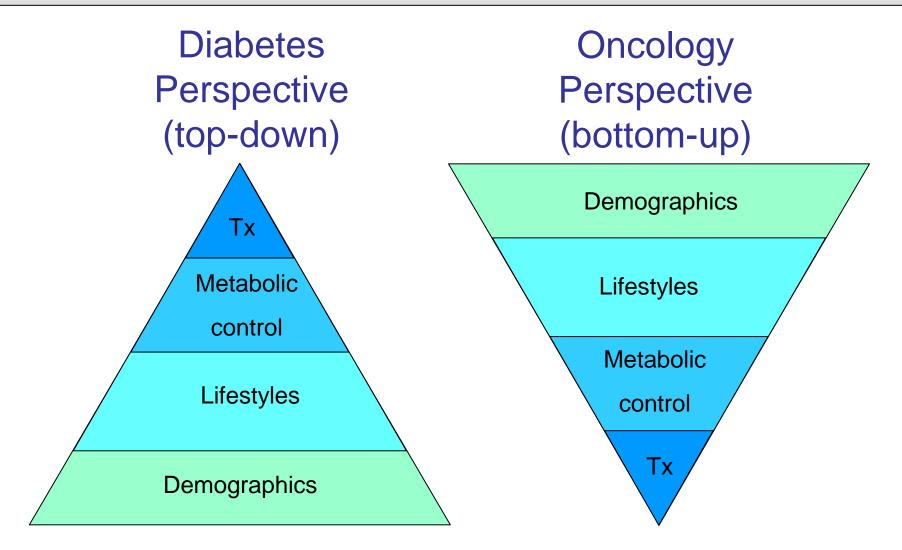
Mechanical mechanisms

Hypertension and renal cancer Acid reflux and oesophageal adenocarcinoma Increased iodine uptake and thyroid cancer


Insulin analogue has more IGF-I 'look'


Kaarsholm & Ludvigsen. Receptor 1995;5:1–8 Pires & Chacra. Arq Bras Endocrinol Metabol 2008;52:268–78


The next two talks


What's happen in the last 20 months

EASD linked initiatives

framework so far

- Cancer incidence (rather than mortality)
- Gender & site-specific approach
- Important confounders
 e.g. BMI, smoking
- Time-varying analyses, varying dose, immortal time bias

- Obesity is associated with risk of several cancer types
- Diabetes is associated with risk of several cancer types, likely in many cases to be independent of BMI
- Diabetes & increased cancer mortality needs research
- Insulins may increase cancer risk; metformin may reduce
- Future 2nd generation analyses more sophisticated