Estimated GFR in Diabetes

NDConline

Baskar V, Holland MR, Singh BM

Conline

Introduction

- Diabetic nephropathy triad
 - Albuminuria rise
 - BP rise
 - GFR fall
- Abnormal serum creatinine
 - Relative late stage in natural history
- Strategies to identify individuals at risk
 - Dipstick proteinuria
 - Microalbuminuria
 - BP

Introduction

- Diabetic nephropathy
 - Albuminuria rise
 - BP rise
 - GFR fall
- Abnormal serum creatinine
 - Relative late stage in natural history
- Strategies to identify individuals at risk
 - Dipstick proteinuria
 - Microalbuminuria
 - BP

MA based strategies - pitfalls

- Uncertain predictive value
 - 20-30% progression (cf. 85-100% in 1980's)
- Other causes of albuminuria
- Non-albuminuric renal impairment
 - Non-diabetic renal disease in diabetes
 - ≈ 25% proven DN & normoalbuminuria

GFR

- True GFR measurements unsuitable for mass screening
- Estimated GFR (eGFR)
 - From serum creatinine, age, gender, ethnicity...
 - Reliable indicators of renal reserve
- Supported by organisations
 - National Kidney Foundation
 - Renal NSF
 - ADA
 - (DUK, ABCD)

CKD staging

Table 1—Stages of CKD

WOConline

10

Stage	Description	GFR (ml/min/1.73 m² body surface area)
1	Kidney damage with normal or increased GFR	≥90
2	Kidney damage with mildly decreased GFR	60-89
3	Moderately decreased GFR	30–59
4	Severely decreased GFR	15-29
5	Kidney failure	<15 or dialysis

CKD staging

Table 1—Stages of CKD

WDConline

0

Stage	Description	GFR (ml/min/1.73 m² body surface area)
1	Kidney damage with normal or increased GFR	≥90
2	Kidney damage with mildly decreased GFR	60-89
3	Moderately decreased GFR	30–59
4	Severely decreased GFR	15-29
5	Kidney failure	<15 or dialysis

eGFR equation – C&G or MDRD

WConline

Aims

- To evaluate renal disease burden in diabetes using eGFR – either by C&G or MDRD estimate
- To study the clinical utility of eGFR (over and above current markers)

Methods

- Study design
 - cross sectional from district diabetes register
- Study period
 - Jan 2002 to June 2003
- MA screening
 - spot morning urine ACR (3.5mg/mmol threshold)
- SPSS 11.5 for statistical analysis

eGFR equations

• MDRD

online

186 x [Serum Cr (µmol/l)/88.4]^{-1.154} x [Age]^{-0.203} x [0.742 if female] x [1.210 if Black]

Cockcroft's and Gault's equation

(140 - age in years) x body weight (kg) x K

Serum creatinine (µmol/l)

K = 1.23 for men or 1.04 for women

Correction for BSA of 1.73m²

Results

• Total N = 4548; N with eGFR = **4173**

WDConline

Age	60 <u>+</u> 14y
Duration	12 <u>+</u> 9y
BMI	31 <u>+</u> 6Kg/m ²
Males	57%
Type 2 DM	78%
Whites/Asians/AfroCarib	68%/23%/9%
Serum Creatinine	101 <u>+</u> 44µmol/l
Urine ACR	1.75mg/mmol

Frequency distribution

Figure 1a

1200

C&G eGFR

MDRD eGFR

C&G and MDRD correlation

	C&G >90	C&G 90-60	C&G 60-30	C&G <30	Total
MDRD	316	49	0	0	365
>90	(87%)	(13%)	(0%)	(0%)	
MDRD	722	1557	295	0	2574
90-60	(28%)	(61%)	(11%)	(0%)	
MDRD	10	315	795	22	1142
60-30	(1%)	(28%)	(70%)	(2%)	
MDRD	0	0	33	59	92
<30	(0%)	(0%)	(36%)	(64%)	

	C&G >90	C&G 90-60	C&G 60-30	C&G <30	Total
MDRD	316	49	0	0	365
>90	(87%)	(13%)	(0%)	(0%)	
MDRD	722	1557	295	0	2574
90-60	(28%)	(61%)	(11%)	(0%)	
MDRD	10	315	795	22	1142
60-30	(1%)	(28%)	(70%)	(2%)	
MDRD	0	0	33	59	92
<30	(0%)	(0%)	(36%)	(64%)	

65% Green

	C&G >90	C&G 90-60	C&G 60-30	C&G <30	Total
MDRD	316	49	0	0	365
>90	(87%)	(13%)	(0%)	(0%)	
MDRD	722	1557	295	0	2574
90-60	(28%)	(61%)	(11%)	(0%)	
MDRD	10	315	795	22	1142
60-30	(1%)	(28%)	(70%)	(2%)	
MDRD	0	0	33	59	92
<30	(0%)	(0%)	(36%)	(64%)	

65% Green; 20% Amber

	C&G >90	C&G 90-60	C&G 60-30	C&G <30	Total
MDRD	316	49	0	0	365
>90	(87%)	(13%)	(0%)	(0%)	
MDRD	722	1557	295	0	2574
90-60	(28%)	(61%)	(11%)	(0%)	
MDRD	10	315	795	22	1142
60-30	(1%)	(28%)	(70%)	(2%)	
MDRD	0	0	33	59	92
<30	(0%)	(0%)	(36%)	(64%)	

65% Green; 20% Amber & 15% Red

Renal risk markers in those with serious discordance

	C&G<60 MDRD>60 N=295	MDRD<60 C&G>60 N=325
Abnormal serum Creatinine	28 (10%)	51 (16%)
Abnormal urine ACR	90 (31%)	112 (35%)
Abnormal creatinine or ACR	107 (36%)	136 (42%)

Study summary

- Renal disease burden was different depending on the eGFR equation used
- Full concordance observed in 65%
 - Serious discordance in 15%
- The majority with serious discordance had normal levels of other renal markers
 - Relying entirely on eGFR to flag their risk

Discussion

• What does low eGFR really mean?

eGFR, RRT & Mortality

N=28,000	Stage 2	Stage 3	Stage 4
RRT (within 3yr)	1.1%	1.3%	19.9%
Mortality	19.5%	24.3%	45.7%

Keith et al, Arch Intern Med 2004

eGFR, mortality & CVS events

Go et al, NEJM, 2004

Discussion – role of eGFR

- Renal progression indicator
- Predictor of mortality & CVS events
- Role in predicting safety of Metformin?
- Early and inexpensive identification of risk individuals

- No data to support intervention solely based on eGFR
- Lack of standardization of creatinine across labs
- Validation in diabetes lacking
- Exaggerates risk in the very old?

Conclusion

- eGFR may have an additional role in renal and vascular risk prediction
- Need for a single equation of choice
 - Clarity
 - Uniformity of practice