Estimated GFR in Diabetes

Baskar V, Holland MR, Singh BM

Introduction

- Diabetic nephropathy triad
- Albuminuria rise
- BP rise
- GFR fall
- Abnormal serum creatinine
- Relative late stage in natural history
- Strategies to identify individuals at risk
- Dipstick proteinuria
- Microalbuminuria
- BP

Introduction

- Diabetic nephropathy
- Albuminuria rise
- BP rise
- GFR fall
- Abnormal serum creatinine
- Relative late stage in natural history
- Strategies to identify individuals at risk
- Dipstick proteinuria
- Microalbuminuria
- BP

MA based strategies - pitfalls

- Uncertain predictive value
- 20-30\% progression (cf. 85-100\% in 1980's)
- Other causes of albuminuria
- Non-albuminuric renal impairment
- Non-diabetic renal disease in diabetes
- $\approx 25 \%$ proven DN \& normoalbuminuria

GFR

- True GFR measurements unsuitable for mass screening
- Estimated GFR (eGFR)
- From serum creatinine, age, gender, ethnicity...
- Reliable indicators of renal reserve
- Supported by organisations
- National Kidney Foundation
- Renal NSF
- ADA
- (DUK, ABCD)

Table 1—Stages of CKD

Stage	Description	GFR $\left(\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}\right.$ body surface area)
1	Kidney damage with normal or increased GFR	≥ 90
2	Kidney damage with mildly decreased GFR	$60-89$
3	Moderately decreased GFR	$30-59$
4	Severely decreased GFR	$15-29$
5	Kidney failure	<15 or dialysis

Table 1—Stages of CKD

Stage	Description	GFR $\left(\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}\right.$ body surface area $)$
1	Kidney damage with normal or increased GFR	≥ 90
2	Kidney damage with mildly decreased GFR	$60-89$
3	Moderately decreased GFR	$30-59$
4	Severely decreased GFR	$15-29$
5	Kidney failure	<15 or dialysis

eGFR equation - C\&G or MDRD

Aims

- To evaluate renal disease burden in diabetes using eGFR - either by C\&G or MDRD estimate
- To study the clinical utility of eGFR (over and above current markers)

Methods

- Study design
- cross sectional from district diabetes register
- Study period
- Jan 2002 to June 2003
- MA screening
- spot morning urine ACR ($3.5 \mathrm{mg} / \mathrm{mmol}$ threshold)
- SPSS 11.5 for statistical analysis

eGFR equations

- MDRD
$186 \times[\text { Serum } \mathrm{Cr}(\mu \mathrm{mol} / \mathrm{I}) / 88.4]^{-1.154} \times[\text { Age }]^{-0.203} \mathrm{x}$ [0.742 if female] x [1.210 if Black]
- Cockcroft's and Gault's equation (140-age in years) x body weight (kg) x K

Serum creatinine ($\mu \mathrm{mol} / \mathrm{l}$)
$K=1.23$ for men or 1.04 for women
Correction for BSA of $1.73 \mathrm{~m}^{2}$

Results

- Total $\mathrm{N}=4548 ; \mathrm{N}$ with eGFR $=4173$

Age	$60 \pm 14 \mathrm{y}$
Duration	$12 \pm 9 \mathrm{y}$
BMI	$31 \pm 6 \mathrm{Kg} / \mathrm{m}^{2}$
Males	57%
Type 2 DM	78%
Whites/Asians/AfroCarib	$68 \% / 23 \% / 9 \%$
Serum Creatinine	$101 \pm 44 \mu \mathrm{~mol} / \mathrm{I}$
Urine ACR	$1.75 \mathrm{mg} / \mathrm{mmol}$

Figure 1a

Figure 1b

C\&G and MDRD correlation

Soncordance \& Discordance					
	$\begin{aligned} & \text { C\&G } \\ & >90 \end{aligned}$	$\begin{gathered} \text { C\&G } \\ 90-60 \end{gathered}$	$\begin{gathered} \text { C\&G } \\ 60-30 \end{gathered}$	$\begin{aligned} & \text { C\&G } \\ & <30 \end{aligned}$	Total
MDRD >90	$\begin{gathered} 316 \\ (87 \%) \end{gathered}$	$\begin{gathered} 49 \\ (13 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	365
MDRD $90-60$	$\begin{gathered} 722 \\ (28 \%) \end{gathered}$	$\begin{gathered} 1557 \\ (61 \%) \end{gathered}$	$\begin{gathered} 295 \\ (11 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	2574
$\begin{gathered} \text { MDRD } \\ 60-30 \end{gathered}$	$\begin{gathered} 10 \\ (1 \%) \end{gathered}$	$\begin{gathered} 315 \\ (28 \%) \end{gathered}$	$\begin{gathered} 795 \\ (70 \%) \end{gathered}$	$\begin{gathered} 22 \\ (2 \%) \end{gathered}$	1142
MDRD <30	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 33 \\ (36 \%) \end{gathered}$	$\begin{gathered} 59 \\ (64 \%) \end{gathered}$	92

Concordance \& Discordance

Concordance \& Discordance					
	$\begin{gathered} \text { C\&G } \\ >90 \end{gathered}$	$\begin{aligned} & \text { C\&G } \\ & 90-60 \end{aligned}$	$\begin{aligned} & C \& G \\ & 60-30 \end{aligned}$	$\begin{aligned} & \text { C\&G } \\ & <30 \end{aligned}$	Total
$\begin{gathered} \text { MDRD } \\ >90 \end{gathered}$	$\begin{gathered} 316 \\ (87 \%) \end{gathered}$	$\begin{gathered} 49 \\ (13 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	365
MDRD 90-60	$\begin{gathered} 722 \\ (28 \%) \end{gathered}$	$\begin{gathered} 1557 \\ (61 \%) \end{gathered}$	$\begin{gathered} 295 \\ (11 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	2574
MDRD 60-30	$\begin{gathered} 10 \\ (1 \%) \end{gathered}$	$\begin{gathered} 315 \\ (28 \%) \end{gathered}$	$\begin{gathered} 795 \\ (70 \%) \end{gathered}$	$\begin{gathered} 22 \\ (2 \%) \end{gathered}$	1142
$\begin{aligned} & \text { MDRD } \\ & <30 \end{aligned}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 0 \\ (0 \%) \end{gathered}$	$\begin{gathered} 33 \\ (36 \%) \end{gathered}$	$\begin{gathered} 59 \\ (64 \%) \end{gathered}$	92

65\% Green

Concordance \& Discordance

	C\&G >90	C\&G $90-60$	C\&G $60-30$	C\&G <30	Total
MDRD >90	316 (87%)	49	0	0	365
MDRD	72%	(0%)	(0%)		
$90-60$	(28%)	1557	$\mathbf{2 9 5}$	0	2574
MDRD	$\mathbf{1 0}$	$\mathbf{3 1 5}$	$\mathbf{(1 1 \%)}$	(0%)	
$60-30$	$\mathbf{(1 \%)}$	$\mathbf{(2 8 \%)}$	(70%)	22	1142
MDRD	0	0	33	59	92
30	(0%)	(0%)	(36%)	(64%)	

65\% Green;

Concordance \& Discordance

	C\&G >90	C\&G $90-60$	C\&G $60-30$	C\&G <30	Total
MDRD >90	316 (87%)	49	0	0	365
MDRD	72%	1357	(0%)	(0%)	
$90-60$	(28%)	(61%)	(11%)	0	2574
MDRD	10	315	795	22	1142
$60-30$	(1%)	(28%)	(70%)	(2%)	
MDRD <30	0	0	33	59	92

65\% Green;
 \& 15\% Red

Renal risk markers in those with serious discordance

	C\&G<60 MDRD>60 N=295	MDRD<60 C\&G>60 $\mathbf{N = 3 2 5}$
Abnormal serum Creatinine	$28(10 \%)$	$51(16 \%)$
Abnormal urine ACR	$90(31 \%)$	$112(35 \%)$
Abnormal creatinine or ACR	$107(36 \%)$	$136(42 \%)$

Study summary

- Renal disease burden was different depending on the eGFR equation used
- Full concordance observed in 65\%
- Serious discordance in 15\%
- The majority with serious discordance had normal levels of other renal markers
- Relying entirely on eGFR to flag their risk
- What does low eGFR really mean?

eGFR, RRT \& Mortality

N=28,000	Stage 2	Stage 3	Stage 4
RRT (within 3yr)	1.1%	1.3%	19.9%
Mortality	19.5%	24.3%	45.7%

Keith et al, Arch Intern Med 2004

eGFR, mortality \& CVS events

$\begin{array}{llllll}\text { No. of Events } & 73,108 & 34,690 & 18,580 & 8809 & 3824\end{array}$

Discussion - role of eGFR

- Renal progression indicator
- Predictor of mortality \& CVS events
- Role in predicting safety of Metformin?
- Early and inexpensive identification of risk individuals
- No data to support intervention solely based on eGFR
- Lack of standardization of creatinine across labs
- Validation in diabetes lacking
- Exaggerates risk in the very old?

Conclusion

- eGFR may have an additional role in renal and vascular risk prediction
- Need for a single equation of choice
- Clarity
- Uniformity of practice

