Current and future management of diabetic renal failure

(or, how we see your patients)

Why are we interested?

- Number of patients
- Morbidity
- mortality

Contribution to "new starts" on renal replacement therapy (RRT) (UK, 2003) • Diabetes as primary renal disease:

- 22% < 65, 15% > 65
- Co-existent diabetes: 5% < 65, 10% > 65
- OVERALL 26% DIABETES

Co-morbidity at start of RRT (UK 2003)

% with disease	Non-diabetics	Diabetics
cardiovascular	23	32
cerebrovascular	11	17
Peripheral vasc	11	28
COPD	8	6
malignancy	13	4
Liver disease	2	2

Unrecorded but significant...

- Blindness
- Memory loss
- Depression
- History of poor adherence
- Limitations of access to health care

Mortality

- Greater in diabetic patients at all age groups and all time periods
- One-year survival 83% < 65, 72% > 65 RR 1.65 v. non-diabetics (p<0.0001) (UK 2003, 90 day exclusion applied)
- Five-year survival 30% (EDTA, SRR)

Morbidity of diabetic patients on RRT – bed stay in Western Infirmary Renal Unit • Prevalence in RRT population 12%

- Admissions > 10 nights 16%
- Bed nights occupied 22% (29% of <65s, 20% post-rehab)

Peripheral vascular disease leading to amputation

- Medicare data 1991-4 (*Eggers et al. Kidney Int 2000 56 1524*) Diabetes + renal failure = 10 x diabetes 2/3 die within 2 yrs of amputation
- Newer VA data

 (Young et al. Diabetes Care 2006 495)
 diabetic nephropathy = 3 x diabetes
 diabetes + renal failure = 4 x diabetes

Clinical consequences of delay in amputation

- Malnourished, wasted, immobile patient
- Oedema (albumin 20g/l)
- Pressure necrosis
- C difficile
- MRSA
- Opiate toxicity

Prevention is better than cure (or failure to cure)

Is the management of diabetic nephropathy the same as that of
a) other vascular complications of diabetes?
b) other renal diseases?

eGFR, CKD

- Stage 3 CKD = eGFR 30-59ml/min
- Stage 4 = 15-29
- Stage 5 = <15

Cardiovascular interventions

- Aspirin
- Antihypertensives
- Blockers of Renin-angiotensin system
- Statins

Blood pressure control

- Excellent evidence at all stages
- Targets keep falling

Renin-angiotensin system blockade

- Reduces proteinuria
- Delays progression of nephropathy, BUT
- Difficult to sustain in severe renal impairment (hyperkalaemia)
- Note effect of pre-existing hyporeninaemic hypoaldosteronism

ACE inhibition in stage 4 CKD

N Engl J Med 2006 354 131-140 & 189-191

Benazepril is safe (Hou et al)

"Their conclusions may come as news to the many clinicians who avoid or abandon the use...in stage 4 chronic kidney disease" (Hebert, Editorial)

Statins – and cholesterol?

- Easy till renal failure...
- Is cholesterol a risk factor in dialysis patients?
- Eg atorvastatin in type II diabetes CARDS study in favour, BUT
- no overall benefit in haemodialysis patients (*Wanner et al N Engl J Med 2005 353 238-248*)

CKD Stage IV

- Anaemia
- Renal osteodystrophy
- Vascular calcification

Causes of anaemia in renal failure

- Erythropoietin deficiency
- Reduced red cell life span (2/3 normal)
- Everything else eg iron deficiency

• Treated with erythropoietin or analogues

Calcium/phosphate metabolism

- Alfacalcidol?
- Phosphate binders... often prescribed, rarely taken calcium-based or sevelamer

Sevelamer (Renagel)

- Less calcification
- Lower cholesterol
- Lower glucose?
- Much more expensive
- No more palatable

When to start RRT

- Early start? Lead time bias in studies
- Symptoms (earlier in diabetic patients)
- Biochemistry
- Option of conservative management

Dialysis

- Haemodialysis (2/3 in UK)
- Peritoneal dialysis may be nocturnal automated peritoneal dialysis, with glucose-based dialysate by night and icodextrin in situ by day

Transplantation

- Kidney
- Kidney-pancreas

• Both apply only to fitter patients

Immunosuppressive drug therapy

- Effects on blood pressure
- Effects on lipids
- Effects on glucose tolerance

Islets and stem cells

- Five-Year Follow-Up after Clinical Islet Transplantation (*Ryan et al. Diabetes 2005* 54 2060-2069)
- Islet Transplantation as a Treatment for Diabetes – A Work in Progress (*Robertson*. N Engl J Med 2004 350 694-705)
- No Stem Cell is an Islet (Yet) (*Stainier*. N Engl J Med 2006 354 521-523)

Hope for the future

- Finnish registry data of Type I diabetes (JAMA 2005 294 1782-1787)
- Risk of nephropathy falling
- Survival improving