ABCD debate 06042006

John McKnight

Statins should be routinely prescribed in adults with Type 1 diabetes

What a load of

nonsense

Reflections

• Prescribing -Media – Politics/finance -Medical literature -Guidelines committees – Pharmaceutical industry

Conflict of interest

Pfizer
- CARDS investigator
- ADA with Pfizer
- Few talks for them (local)
- Advisory Board

Health

Your message has been sent to john.mcknight@blueyonder.co.uk.

THE SCOTSMAN Tue 14 Mar 2006

Heart surgery: May be needed less frequently if further trials confirm original findings. Picture: Julie Bull

📇 Printer friendly

🖂 Send to friend

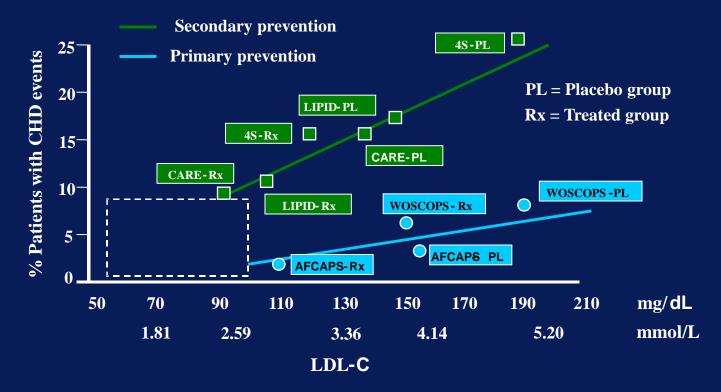
Doctors discover drug to reverse heart disease

LYNDSAY MOSS

HEALTH CORRESPONDENT

- 'Holy grail' drug breaks up fat that leads to heart attacks and strokes
- Four out of five patients successfully treated; no serious side effects
- Around 2m British people affected by narrowed arteries caused by fat

Key quote "For the first time, we have shown that it is possible to turn the clock back in the arteries of people with heart disease" - *Dr Neal Uren*, *Edinburgh Royal Infirmary*


Politics

New GP contract
Insulin pump therapy

Literature

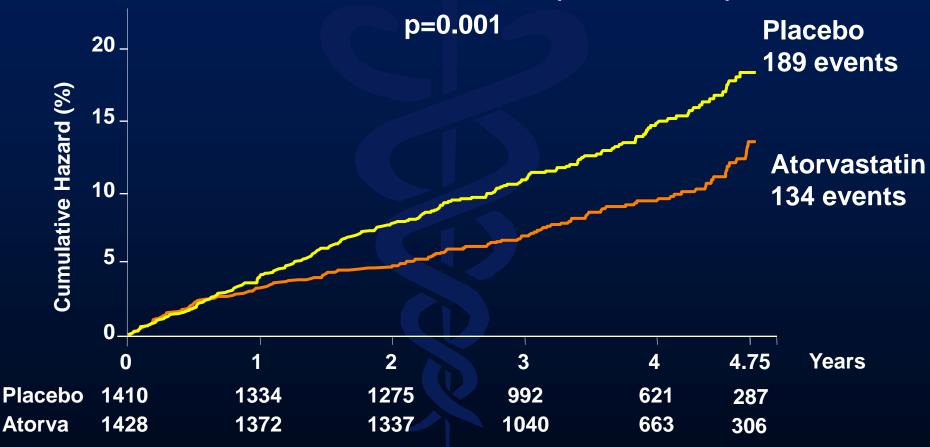
- Publication bias
- Enthusiasm of authors
- Different interpretation
- Extrapolation of results to different populations
- Information overload

Effects of Lipid Lowering Therapy on CHD Events in Statin Trials

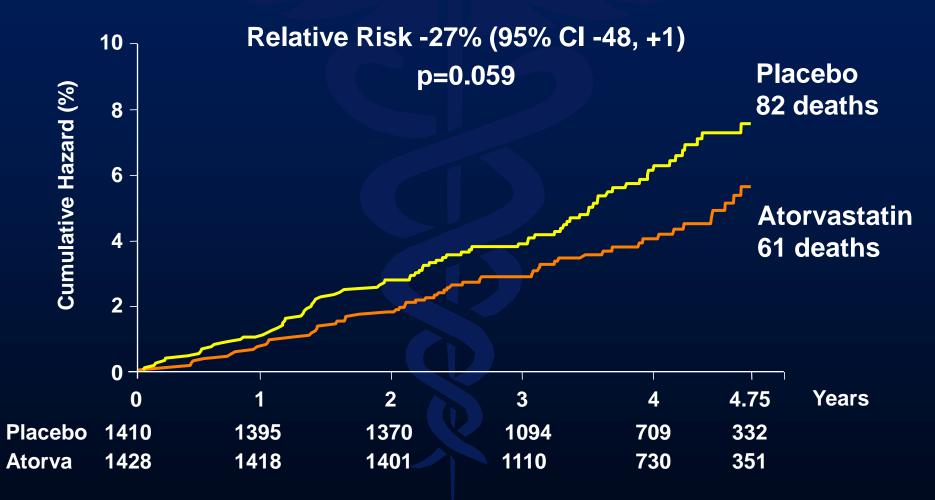
Adapted from Kastelein JJP. Atheroscler 1999;143 (Suppl 1):S17 S21.

Problems with interpretation

- Events count vs individuals with an event
- Major vs minor events
 Angina, NSTEMI vs coronary death/severe stroke
- Few truly primary prevention studies


CARDS Eligibility Criteria

- Type 2 diabetes, 40-75 years of age
- Cholesterol not very elevated
- But high vascular risk:
 - Hypertension defined as receiving antihypertensive treatment or SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg
 - Retinopathy
 - Microalbuminuria or macroalbuminuria
 - Current smoking


Colhoun HM et al. Diabetic Med. 2002;19:201-211.

Cumulative Hazard for Any CVD Endpoint

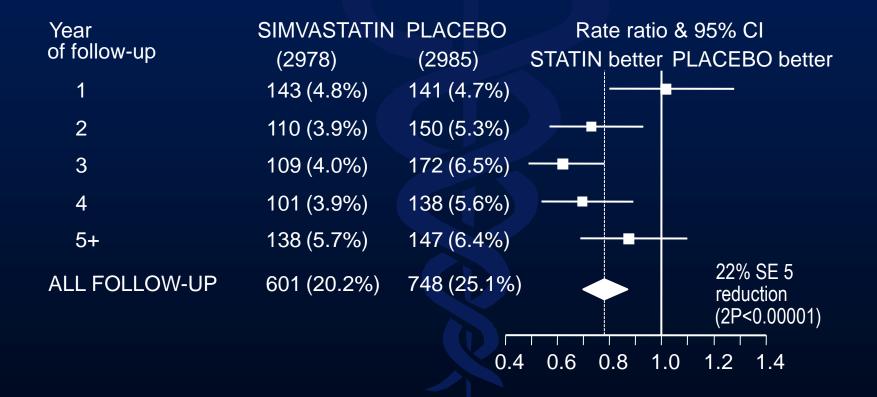
Relative Risk Reduction= 32% (95% CI 15-45)

Cumulative Hazard for All Cause Mortality

Cause of Death By Treatment Arm

	Placebo	Atorvastatin
Total deaths	82	61
Coronary	25	21
Other cardiac	3	1
Cerebrovascular	7	1
Other cardiovascular	2	2
Total cardiovascular deaths	37 (2.6%)	25 (1.8%)
Diabetes related death	1	2
Cancer death	30	20
Suicide, accident or violent death	3	4
Other death	11	10
Total non-cardiovascular deaths	45 (3.2%)	36 (2.5%)

Baseline characteristics of HPS with diabetes


- 5963 patients
- Men 70 %
- Smokers 13 %
- Vascular disease present 51 %

HPS - Major Vascular Events by Year in Diabetic Patients

HPS, Lancet 2003; 361:2005-16.

SIMVASTATIN: MAJOR VASCULAR EVENT by YEAR in DIABETIC PATIENTS

Conclusions

 Statin therapy should be now be considered routinely for all diabetic patients at sufficiently high risk of major vascular events......

Conclusions

• HPS

 Statin therapy should be now be considered routinely for all diabetic patients at sufficiently high risk of major vascular events.....

• CARDS

 The debate about whether all people with this disorder warrant statin treatment should now focus on whether any patients are at sufficiently low risk for this treatment to be withheld

Negative aspects

• Harm -Side effects – Labelling • Financial cost Wrong emphasis Compliance

Guidelines, targets and consensus statements

Guidelines/ targets

- 'Value is almost always a round number made up by international jetsetting, moralistic time-expired self appointed gurus producing glossy consensus statements.
- The higher the moral ground the lower the value'

David Matthews RCPE

Targets

- We're always told we must have a target, or otherwise no-one will know what we are aiming at.
- Fine you tell me a number and I'll better it by telling you in a serious voice that you are far too conservative, and if you were as good a doctor as I am you'd certainly be aiming lower than that.

SIGN Guidelines

Methodological Principles

• Development is carried out by multidisciplinary, nationally representative groups

• A systematic review is conducted to identify and critically appraise the evidence

•Recommendations are explicitly linked to the supporting evidence

GOBSAT methodology

 Advantages - Cheap, quick, fits the hierarchical nature of the medical profession Disadvantages -Unreliable, could be open to bias, outdated

Risk reduction of 25 %

Sufficient risk
 CVD risk charts

 Predict risk of non-fatal MI or stroke, coronary or stroke death or new onset of angina

• Treat those at 20 % risk

Benefit depends on absolute risk

- 100 patients at 20 % risk over 10 years
- 80 don't have an event
- 20 have an event

- Treat 100 patients at 20
 % risk over 10 years
- 80 don't have an event
- Of 20 who would have an event
 - 15 still do
 - 5 events prevented

NNT 20

'Benefit' or NNT depend on absolute risk

25 % risk reduction

Risk 1 % in 10 years
Risk 40 % in 10 year

NNT 400 to prevent
 NNT 10
 one event

The question is:

Which (if any) patients with type 1 diabetes are at sufficient risk to require intervention?

20 % 10 yr risk

JBS 2 (Diabetes)

- All patients above 40 yr
- 18 to 39 with
 - Retinopathy
 - Nephropathy or microalbuminuria
 - HbA1c >9 %
 - Treated HT
 - Total chol >6 mmol/l
 - Metabolic syndrome
 - FH of premature CVD in 1st degree relative

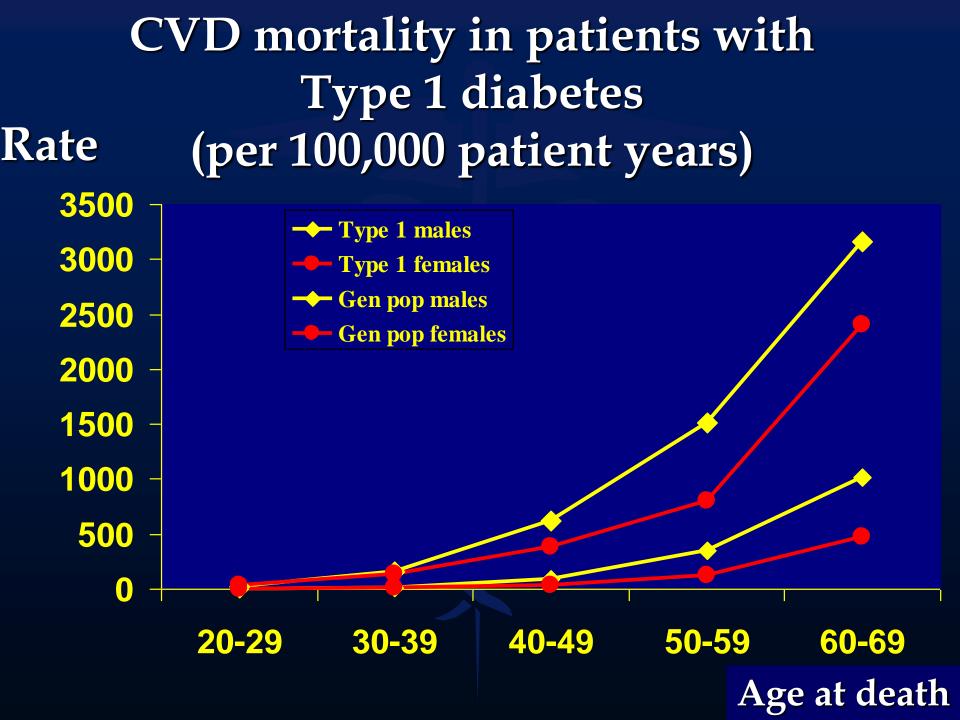
That's more than half of my patients aged 20 to 40!

Diabetes UK Cohort

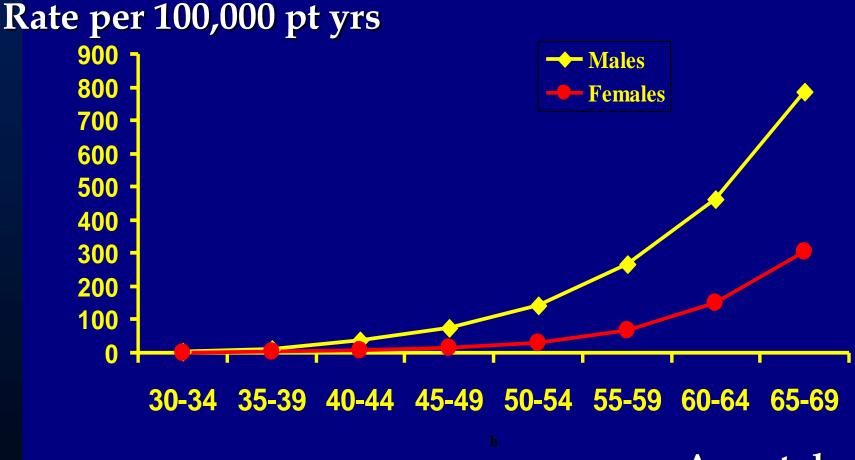
22,848 patients - England and Scotland
Date of entry 1972 – 1993
Flagged at NHSCR – Death Emigration Cancer
Follow-up to June 2004

Deaths = 1944

Laing SP et al, Diabetologia 2003 Stroke 2003

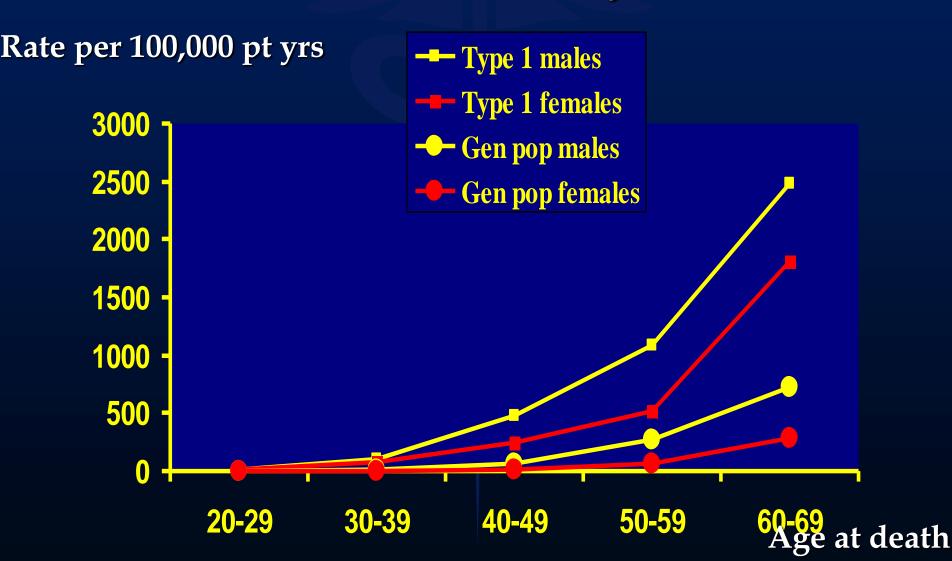

Mortality rates and SMRs for all-cause deaths

All ages	No.	Rate	Rate Gen	SMR
1-84	deaths	Type 1	pop	
Males	1163	469	160	2.9*
Females	781	357	86	4.1*

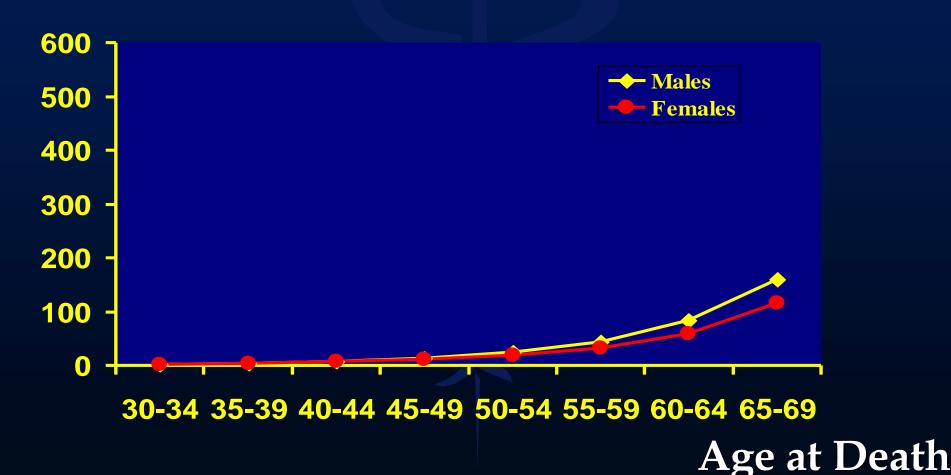

Rate per 100,000 person years

Cardiovascular mortality Type I diabetes

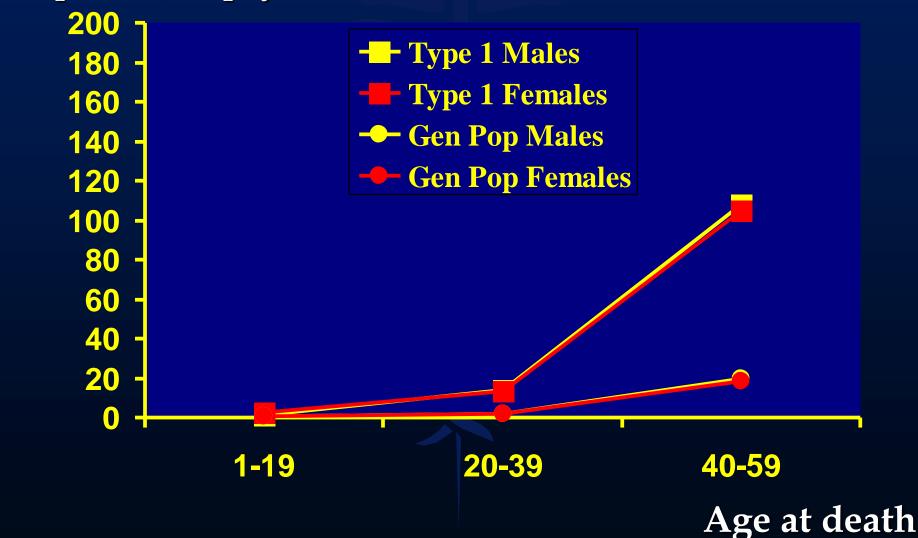
• Males	n=438
IHD	n=312 (71%)
Other heart	n=45
Cerebrovascular	n=60 (14%)
Other	n=21
• Females	n=295
IHD	n=193 (65%)
Other heart	n=29
Cerebrovascular	n=60 (18%)
Other	n=19



General Population UK – IHD mortality 30-69 years



Age at death


IHD mortality in patients with Type 1 diabetes, 20-69 years

General Population UK – Cerebrovascular mortality 30-69 years (per 100,000 pt years)

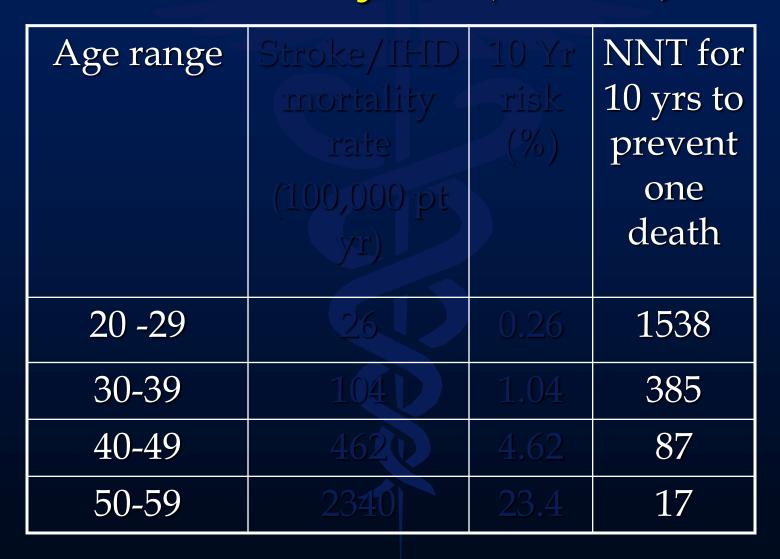
Cerebrovascular mortality <60 years Rate per 100,000 pt yrs

Ischaemic heart disease mortality by age

Age		Rate Type 1	Rate Gen	SMR
			pop	
20-29		12		
30-39	Μ	98	8	12.1*
	F	83	2	42.1*
40-49	Μ	478	64	7.5*
	F	24 0	14	17.4*
50-59	Μ	1080	265	4.1*
	F	519	70	7.5*
60-69	Μ	2483	729	3.4*
	F	1815	287	6.3*

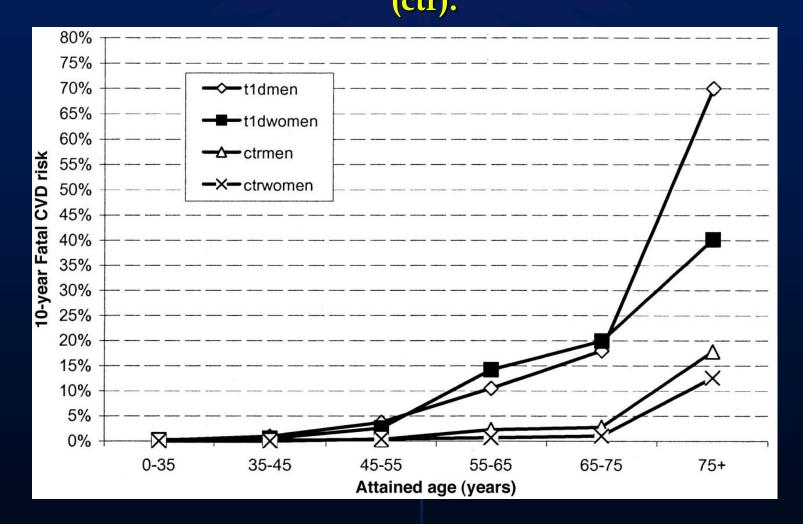
Summary.... (Death)

Age range	Stroke/IHD	10 Yr	\mathbb{NNT} for
	mortality	risk	10 yrs to
	rate	(%)	prevent
	(100,000 pt		one
	yr)		death
20 -29	26	0.26	1538
30-39	104	1.04	385
40-49	462	4.62	87
50-59	2340	23.4	17


Laing SP et al. Diabetologia 2003

Summary.... (Death)

Age range	Stroke/IHD	10 Yr	NNT for
	mortality	risk	10 yrs to
	rate	(%)	prevent
	(100,000 pt		one
	yr)		death
20 -29	26	0.26	1538
30-39	104	1.04	385
40-49	4620	4.62	87
50-59	2340	23.4	17


Laing SP et al, Diabetologia 2003

Summary.... (Death)

Laing SP et al, Diabetologia 2003

Figure 1 — Estimated 10-year fatal CVD risk by current (or attained) age in type 1 diabetic (t1d) men and women compared with nondiabetic comparison group (ctr).

Soedamah-Muthu et al, Diabetes Care 2006; 29 (4): 798

Vascular risk, not death

 Myocardial infarction, acute coronary heart disease death, revascularisation or stroke
 New angina

Soedamah-Muthu et al; Diabetes Care 2006; 29: 798 • 7,479 Pts with Type 1 diabetes • 1992 - 1999 Incident major CVD events - Myocardial infarction, acute coronary heart disease death, revascularisation or stroke

Absolute risk for major CVD in Type 1 diabetes (% 10 year risk)

Age band	Males	Females
<u><</u> 35	0.8	0.5
35 -45	4.8	3.5
45 - 55	10.6	10.2
55 - 65	39.4	22.8
65 - 75	35.2	38.7
> 75	122	87.3

Diabetes Care 2006; 29: 798

'Numbers needed to treat' to prevent one major CV event

Age	Males	Males	Females	Females
band	Risk	NNT	Risk	NNT
<u><</u> 35	0.8	500	0.5	800
35 -45	4.8	83	3.5	114
45 - 55	10.6	38	10.2	39
55 - 65	39.4	10	22.8	18
65 - 75	35.2	11	38.7	10
> 75	122	3?	87.3	5?

Can we predict sub-groups at higher risk?

- Nephropathy
 - Overt more than microalbuminuria
- Retinopathy confounded by nephropathy
- HbA1c
- Metabolic syndrome
- Hypertension
- Smoking
- Family history

Predicting Risk in Type 1 Diabetes

- RCPE diabetes register
 Six clinics in Scotland
- Patients with type 1 diabetes
- Excluded those with pre-existing macrovascular disease
- Six to nine years follow up

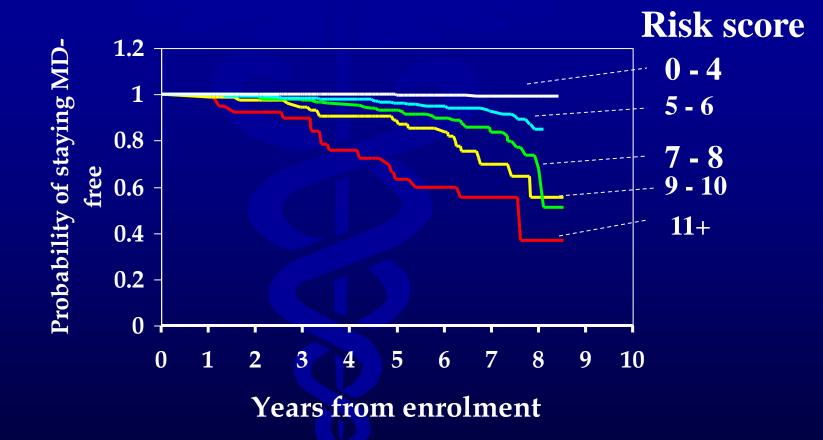
RCPE diabetes register

n =2136
55 % male
Aged

- < 35
1476
- 35 to 45
433
- 45 + 227

Outcome SMR link

• Stroke	• 19
• TIA	• 7
• Angina	• 49
• MI	• 38
 Intermittent claudication 	• 24
• PVD surgery	• 36
 Cardiac surgery 	• 10
 Any macrovascular disease 	• 110
 Died due to macrovascular disease 	• 30


Significant associations

• Age • Blood pressure • Albuminuria • HbA1c Cholesterol Smoking status All P < 0.001 Categorisation of variables for proportional hazards regression analysis and their derived risk scores

• Age - < 30	0	AlbuminuriaHbAic quartile
- 30 - 40	2	• 0
- 40 - 50	4	• 0
- 50 - 60	6	•1
- > 60	8	• 2
• BP		• Cholesterol
- <140/90	0	- 5-6 - >6
- >140/90	2	• Smoking

4

Kaplan-Meier event free survival for different levels of summed macrovascular risk scores

Predicting risk

- Age 30 $\left(\right)$ 2
- BP >140/90
- Albuminuric 4
- HbA1c 3rd quart 1
- Smoking
- Cholesterol >5 2

Score > 7 treat

2

Conclusions

There is now sufficient information to estimate vascular risk in adults with Type 1 diabetes
We should use this information to aid our decision making with patients

Conclusions

- Young adults with type 1 diabetes are at low risk and are likely to attain little benefit from routine use of statins
- There may be a few that would derive benefit
- There is a potential to cost money and cause harm

Statins should

be routinely prescribed in adults with Type 1 diabetes