An Update on Bone Markers in Metabolic Bone Disease

Professor Bill Fraser Professor of Medicine Norwich Medical School University of East Anglia

A Healthy Skeleton Requires a Balance of Bone Resorption and Bone Formation

Baron R. *Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism.* 5th ed. 2003:1-8. Bringhurst FR, et al. *Harrison's Principles of Internal Medicine*. 16th ed. 2005:2238-2249. Lindsay R, et al. *Treatment of the Postmenopausal Woman: Basic and Clinical Aspects.* 2nd ed. 1999:305-314.

Biochemical Markers of Bone Metabolism

Bone Cell Function

Bone Metabolism

Bone/Collagen Metabolism Cell Function

Resorption

Formation

Collagen Crosslinks PYD/DPD Telopeptides NTX/CTX Cross-linked C-terminal Telopeptide 1CTP Acid Phosphatase (TRAP5b) Hydroxyproline Calcium

Alkaline Phosphatase Osteocalcin Pro-collagen Peptides P1CP/P1NP

а

Analytical Aspects of Bone Markers

The Importance of Sample Type and Timing

Bone Marker Automation

Stokes F et al Clin Chem 2011

Stability of Markers Separated and Stored in the Fridge

			48 hrs	7 days	14 days	28 days
Bone ALP :Serum		102.6 ± 12.0	102.6 ± 8.1	101.3 ± 7.7	100.8 ± 7.5	
CTx:	Lith-hep		$89.4 \pm 4.2*$	$70.1 \pm 5.4*$	46.5 ± 3.1*	$38.4 \pm 8.3^{*}$
		EDTA	98.5 ± 3.3	96.4 ± 4.4	91.2 ± 3.1*	$89.0 \pm 7.3^{*}$
		Serum	96.8 ± 4.3	88.8 ± 11.0	$77.1 \pm 14.4*$	$63.7 \pm 14.7*$
OC:	Lith hep		95.7 ± 3.2	92.5 ± 3.8	87.7 ± 8.2*	$83.5 \pm 6.6^{*}$
		EDTA	102.9 ± 1.5	100.0 ± 1.9	93.4 ± 5.6	$88.4 \pm 4.9^{*}$
		Serum	94.4 ± 0.98	$86.8 \pm 2.6^{*}$	$78.2 \pm 7.9^{*}$	$70.9 \pm 11.8 *$
P1NP:	Lith hep		99.6 ± 2.7	101.0 ± 3.3	99.8 ± 3.0	99.1 ± 2.8
		EDTA	99.4 ± 2.1	101.3 ± 2.2	100.3 ± 2.7	97.1 ± 2.4
		Serum	100.0 ± 2.8	100.3 ± 1.6	98.2 ± 1.5	99.7 ± 3.6
PTH:	Lith hep		97.8 ± 3.6	96.5 ± 5.6	95.6 ± 5.6	92.2 ± 8.1
		EDTA	94.8 ± 3.9	98.3 ± 3.4	95.5 ± 4.7	91.9 ± 4.2

Stokes F et al Clin Chem 2011

Circadian Rhythm of CTX in Normal Male Subjects

- Circadian rhythm
- Night time/Early morning increase in CTX
- Minimal variability daytime

Fraser et al 2001 Chp 10 in Bone Markers: Eastell, Baumann, Hoyle, Wieczorek Eds

Circadian Rhythm of CTX in Normal Male Subjects

- Circadian rhythm
- Night time/Early morning increase in CTX
- Minimal variability daytime

Effect of a Fast

- Fasting all day
- Normalised data
- Nocturnal (8-10h) fast identical to previous data

Christgau S Clin Chem 46: 431; 2000

Sample Type

EDTA PLASMA CTX

- Fasting AM
- Or Afternoon
- Separate then Freeze store at -20C

P1NP

- Any Sample Type
- Fasting AM or Afternoon
- Can transport at ambient temperature
- Store -20C

Clinical Use of Bone Markers

- Treatment of Metabolic Bone Disease
- Secondary Causes of Disease

Biochemical Measurements at Presentation of Paget's Disease

Marker

Relative Costs of Markers

Marker

Effect of Intensive Bisphosphonate Therapy on Serum Alkaline Phosphatase in PDB

Normalisation of ALP

	Sympt	Intens
Baseline	51.2%	51.5%
2 yr	63.2%	81.0%**
End	61.2%	78 80/.**

** *p*<0.001

Baseline Mean CTX at Clinic Visit

Data on File WDF

Combination of Factors to Predict Fracture

Treatments for Osteoporosis

- Hormone Replacement Therapy
- SERM
- Bisphosphonates
- Calcitonin
- Calcium and Vitamin D
- 1,25 Dihydroxyvitamin D
- Parathyroid Hormone PTH

What Concentration of Marker Should We Aim For?

Is there such an entity as a non-responder to bisphosphonate treatment?

Zoledronic Acid 5mg

- Aclasta[®] (zoledronic acid 5 mg solution for infusion) is supplied in ready-to-infuse clear plastic bottles
- IV Infusion once per year

Zoledronic Acid Reduced Mean -CTX

Adapted from Black DM, et al. N Engl J Med. 2007; 356:1809-1822.

Zoledronic Acid Reduced Cumulative 3-Year Risk of Clinical Fractures (Hip, Clinical Vertebral, Non-vertebral)

Values above bars are 3-year cumulative event rates based on Kaplan-Meier estimates.

*P = .0024; \dagger P < .0001; \ddagger P = .0002; Hazard ration; risk reduction vs placebo

[§]Hip fracture was not excluded from analysis of non-vertebral fracture.

Adapted from Black DM, et al. N Engl J Med. 2007; 356: 1809-1822.

Serum CTX Responses

Data on file WDF

Alendronate Treatment

Data on File WDF

Bone "Quality" and the Prediction of Fracture/Response to Therapy

BMD is not the only predictor of fracture

 BMD change only accounts for 4-40% of the change in fracture incidence following treatment

Bone Markers and Response to Rx

 Change in bone markers of resorption account for 25-60% of the reduction in fracture incidence following treatment with anti-resorptive therapy.

Fracture Incidence BMD and Bone Marker Association

- 18 trials, 69,369 women years of follow-up.
- Larger increases in BMD and decreases in Bone Marker significantly associated with reductions in fracture risk

Hochberg M et al JCEM

Bone Marker and Fracture Reduction

Bauer JBMR 2004; 1250-8

Suppression in Daily Practice

- Eeckman DA et al BMC 2011
 - 126 patients in 2 groups
 - Group A (New) 81% achieved better than LSC
 - Group B (Old) 95% lower half of Ref Range
 - If elevated
 - Recent #, C2H5OH, Myeloma, Non Compliance

Persistence with Oral Bisphosphonate Therapy

Silverman SL et al Osteop Int 2011

Treatment with PTH (1-34)

- PTH 20ug or 40ug given as daily subcutaneous injection v placebo
- BMD increase with PTH 2.6-13.7%
- Vertebral fracture reduction
 65% for 20ug dose
 69% for 40ug dose

Neer et al NEJM 2001

20ug PTH (1-34) is the licensed dose for Osteoporosis

3-D µCT Images of Iliac Crest Biopsies at Month 18

Placebo

Spine DXA BMD, QCT Trabecular BMD and QCT Cortical BMD Increase with PTH (1-84) Related to P1NP Changes

Bauer et al JCEM 2007

P1NP Response to PTH (1-34)

Data on file WDF

P1NP Response to PTH (1-34)

Data on file WDF

Osteoporosis Management Programme

- Diagnosis Established
- Measure Serum CTX/P1NP
- Commence Treatment
- 3-4 Months Confirm Response CTX/P1NP
- 6-12 Monthly CTX/P1NP
- 24-36 Months Repeat BMD???

Care of Metabolic Bone Disease

The Evidence Base (Drug Holiday)

*Excluded from safety analysis

"Heterogeneity of Markers"

 23 studies published in the literature using Biochemical Markers in an attempt to predict fracture outcome

• How many took the correct sample type and state when sample taken, how processed, how stored, when measured in relation to sampling?