This House Believes That Surrogate Markers Are Of No Use In Evaluating Treatments For Diabetes

John S. Yudkin Emeritus Professor of Medicine University College London

> The ABCD Debate ABCD Autumn Meeting Royal College of Physicians, London 9th November 2012

Outline

- Diabetes management strategies frequently involve treating risk factors towards Targets set in Guidelines
- Until recently, these targets have been derived, or extrapolated, from epidemiology plus the UKPDS
- There are many assumptions inherent in assuming that changes in surrogate endpoints will confer patient benefit
- Patients are rarely presented with enough information to make informed decisions

Lessons from UKPDS

	Patients with elinical endpoints		Absolute risk: events per 1000 patientyears		Log-rank. P	RR for intensive policy (CI)	Favours Favours Intensive conventional	
AGGREGATE ENDPOINT	intensive (ne2729)	Conventional (n=1138)	int ensive	Conventional			04	1 10
Any diabetes-related endpoint Diabetes-related deaths All-cause mortailty	963 285 489	438 129 213	40.9 10.4 17.9	460 11/5 189	0-029 0-94 0-44	0-88 (0-79-0-99) 0-90 (0-73-1-11) 0-94 (0-80-1-10)		-
Myocardial infarction Stroke Amputation or death from PVD Microvasoular	387 148 29 225	188 55 18 121	14.7 5.6 1.1 8.6	17:4 5:0 1:6 11:4	0.052 0.52 0.15 0.0099	0.84 (0.71-1.00) 1.11 (0.81-1.61) 0.65 (0.36-1.18) 0.75 (0.60-0.93)	_	*

UKPDS33

TARGETS - GUIDELINES

Reviews/Commentaries/ADA Statements

Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials

A position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association

"Until more evidence becomes available, the general goal of <7% appears reasonable."

NHS National Institute for Health and Clinical Excellence

Global Guideline

for Type 2 Diabetes

International Diabetes Federation

- Standard care
- TT1 Advise people with diabetes that maintaining a DCCT-aligned HbA_{1c} below 6.5 % should minimize their risk of developing complications.

Department of Health	Search Go ► Advanced set Site map FOI FAQs Glossary Contact us A
Quality and Outcomes Framework (QOF)	NHS Choices NHS Direct: 0845 4647
Health care - Public health - Management resources Consultations - New	s About us Publications

Risk Factors and Their Reduction

Risk Factors and Their Reduction

	CHD	Stroke (all)
Cholesterol (1mmol/l)		
Epidemiological	+30%	+10%
Intervention	- 23%	- 17%
Blood Pressure (10/6mmHg)		
Epidemiological	+25%	+36%
Intervention	- 22%	- 41%
Glucose (HbA1c 0.9%)		
Epidemiological	+12%	+15%

Yudkin et al 2010

Risk Factors and Their Reduction

	CHD	Stroke (all)
Cholesterol (1mmol/l)		
Epidemiological	+30%	+10%
Intervention	- 23%	- 17%
Blood Pressure (10/6mmHg)		
Epidemiological	+25%	+36%
Intervention	- 22%	- 41%
Glucose (HbA1c 0.9%)		
Epidemiological	+12%	+15%
Intervention	-10%	-4.0%

Yudkin et al 2010

Numbers Needed to Treat

Glucose (HbA1c 0.9%)

NNT for 5 years to prevent 1 CVD event **119**

Cholesterol lowering trials (1mmol/l)

NNT for 5 years to prevent 1 CVD event 44

Blood Pressure lowering trials (10/6mmHg)

NNT for 5 years to prevent 1 CVD event 34

Risk-Benefit Ratio

DCCT, NEJM 1993

Risk-Benefit Ratio

- So for every 119 people put on intensive glucose control and monitoring for 5 years, one will benefit
- The event prevented will be a non-fatal myocardial infarct
- During this time 6 people will need external assistance, or hospital admission, for a severe hypoglycaemic event

Lessons from UKPDS

	Patients with clinical endpoints		Absolute risk: events per 1000 patientyears		Log-rank. P	RR for intensive policy (CI)	Favours Favours Intensive conventional		
AGGREGATE ENDPOINT	intensive (nn2729)	Conventional (n=1138)	intensive	Convertional			04	1	10
Any diabetes-related endpoint. Diabetes-related deaths All-cause mortailty	963 285 489	438 129 213	40.9 10.4 17.9	460 11/5 189	D-029 D-34 D-44	0-88 (0-79-0-99) 0-90 (0-73-1-11) 0-94 (0-80-1-10)		-	
Nyocardial infarction Siroka Amputation or death from PVD Microvascular	987 148 29 225	186 55 18 121	14.7 5.6 1.1 8.6	17:4 5:0 1:6 11:4	0.052 0.52 0.15 0.0099	0.84 (0.71-1.00) 1.11 (0.81-1.51) 0.65 (0.36-1.18) 0.75 (0.60-0.93)		+	

UKPDS33

Lessons from UKPDS

	Patients with		Absolute risk: events		Log-rank.	RR for intensive	Favours Favours		
	clinical endpoints		per 1000 patientyears		P	policy (CI)	Intensive conventional		
AGGREGATE ENDPOINT	intensive (ne2729)	Conventional (n=1138)	int ensive	Conventional			04 1 10		
Any diabetes-related endpoint	963	438	40-9	460	0-029	0-88 (0-79-0-99)	+		
Diabetes-related deaths	285	129	10-4	11/5	0-34	0-90 (0-73-1-11)			
All-cause mortailty	489	213	17-9	189	0-44	0-94 (0-80-1-10)			
Myocardial infarction	387	186	14-7	17.4	0-052	0.84 (0.71-1.00)	*		
Stroke	148	55	5-6	50	0-52	1/11 (0.81-1.61)			
Amputation or death from PVD	29	18	1-1	1.6	0-15	0.65 (0.36-1.18)			
Microvascular	225	121	8-6	11.4	0-0099	0.75 (0.60-0.93)			
Ratinal photocoagulation Vitreous haamorrhage Blind in one aye Cataract extraction	207 19 7B 149	117 10 38 80	7.9	11-0 095 7-4	0-0081 0-51 0-39 0-046	0 71 (0.53-0.96) 0 77 (0.28-2.11) 0 84 (0.51-1.40) 0 76 (0.53-1.08)	*		

SURROGATES AS DISEASE PROGRESSION MARKERS?

Role of Intensive Glucose Control in Development of Renal End Points in Type 2 Diabetes Mellitus

Systematic Review and Meta-analysis

Steven G. Coca, DO, MS; Faramarz Ismail-Beigi, MD, PhD; Nowreen Haq, MD, MPH; Harlan M. Krumholz, MD, SM; Chirag R. Parikh, MD, PhD

Arch Intern Med. 2012;172(10):761-769

Heterogeneity: $\tau^2 = 0.00$; $\chi^2_5 = 5.73$; P = .33; $I^2 = 13\%$ Test for overall effect: z = 4.24; P = .001

Favors Intensive Favors Standard

10

100

0.1

0.01

SURROGATES AS DISEASE PROGRESSION MARKERS?

Role of Intensive Glucose Control in Development of Renal End Points in Type 2 Diabetes Mellitus

Systematic Review and Meta-analysis

Steven G. Coca, DO, MS; Faramarz Ismail-Beigi, MD, PhD; Nowreen Haq, MD, MPH; Harlan M. Krumholz, MD, SM; Chirag R. Parikh, MD, PhD

Arch Intern Med. 2012;172(10):761-769

SURROGATES AS DISEASE PROGRESSION MARKERS?

Microal	ouminuria	3-line 	Vision loss	
ACCORD	-21%	-5%	-16%	-5%
			ETDRS 3 step ↓	Vision loss
ACCORD E	EYE			
Glycaemia	a		-33%	-12%
Fibrate			-40%	-5%

SURROGATES AND 'DISEASE PREVENTION'

ROADMAP

4447 patients type 2 diabetes

Olmesartan vs placebo 3.2y

'Microalbuminuria incidence' reduced from 9.8% to 8.2%

Incident microalbuminuria -16/1000

Excess mortality +5.4/1000

Haller et al NEJM 2011

SURROGATES AND 'DISEASE PREVENTION'

ALTITUDE Trial

8561 patients type 2 DM + CVD/CKD

Aliskiren vs placebo 2.7y

Lower blood pressure, ACR with aliskiren

Study stopped prematurely after interim analysis showed excess adverse events with aliskiren

Parving et al NEJM 2012

SURROGATES AND 'DISEASE PREVENTION'

ALTITUDE Trial

8561 patients type 2 DM + CVD/CKD

Aliskiren vs placebo 2.7y

Lower blood pressure, ACR with aliskiren

Study stopped prematurely after interim analysis showed excess adverse events with aliskiren

"...underscores the need to go beyond surrogate biomarkers and obtain risk-benefit data from clinical end-point trials."

Parving et al NEJM 2012

SURROGATE ENDPOINTS

Exodus 32

With thanks to Paul Katula

SURROGATE ENDPOINTS

Exodus 32

With thanks to Paul Katula

BYETTA AND VICTOZA

BYETTA AND VICTOZA

The new rosiglitazones?

Conclusions

• Assumptions around diabetes guideline targets are not usually based on clinically important endpoints

- Emphasis on these targets in guidelines and in reimbursements may encourage unsafe prescribing
- Surrogate endpoints may not accurately reflect hard endpoints
- Patients are rarely presented with enough information to make informed decisions
- Licensing of diabetes treatments need to be evaluated on the basis of hard endpoints

Informed Choice

65 year old woman, HbA1c 8.0% on maximal oral Rx

Informed Choice

65 year old woman, HbA1c 8.0% on maximal oral Rx

"Insulin will reduce your risk of blindness and kidney failure by 25%, and may help prevent heart attacks"

Informed Choice

65 year old woman, HbA1c 8.0% on maximal oral Rx

"Insulin will reduce your risk of blindness and kidney failure by 25%, and may help prevent heart attacks"

OR

"Your lifetime risk of blindness is 2 in 1000, and of kidney failure 5 in 1000.

We don't know with certainty whether insulin would reduce this.

Your 5 year risk of a heart attack is around 74 in 1000 which insulin would lower to 67 in 1000, but not fatality.

Your risk of serious hypoglycaemia would be increased with insulin by 47 per 1000 in 5 years."