ABCD Debate: Surrogate markers are of no use in evaluating treatment in diabetes

Against the motion M. Angelyn Bethel, MD Deputy Director Oxford Diabetes Trials Unit

Surrogate marker

Definition

- An objective measure (laboratory measurement or physical sign) used as a *substitute* for a clinically meaningful endpoint that directly measures how a patient feels, functions, or survives
- 2. Changes induced by a therapy on the surrogate marker are expected to reflect changes in the clinically meaningful endpoint

Prentice criteria

- 1. Surrogate correlates with the true clinical outcome --usually easy to prove
- Fully captures the net effect of treatment on the clinical outcome --difficult to prove, rarely achieved

Why use surrogate endpoints?

- Measuring the true clinical outcome is not feasible or practical
 - Time
 - Requires an invasive and/or dangerous procedure
 - Desire to intervene before an irreversible outcome
- Performing a clinical trial using the true outcome is not feasible or practical
 - Long duration of follow-up

The ideal surrogate endpoint

Fleming & DeMets. Ann Int Med (1996). 125:605-13

Why surrogate endpoints fail

Fleming & DeMets. Ann Int Med (1996). 125:605-13

Why surrogate endpoints fail

Common surrogate endpoints in diabetes research

- Fasting, 2 hour post-challenge glucose values,
 7-point continuous glucose monitoring
- Area under the curve (AUC) for glucose/insulin
- HOMA-S, HOMA-IR
- HbA1c

HbA1c as a surrogate endpoint...for what?

- Microvascular complications
 - Decrease in vision, blindness
 - Ulcers, amputations
 - End stage renal disease
- Macrovascular complications
 - Myocardial infarction
 - Stroke
 - Unstable angina
- Death

HbA1c and microvascular outcomes

UKPDS: HbA1c and risk for complications

DIABETES TRIALS UNIT The Oxford Centre for Diabetes, Endocrinology and Metabolism

UKPDS 35. BMJ 2000;321:405-12

Intensive glucose control decreases microvascular complications

UKPDS

30-

20-

10-

0

0

Pat jents with events (%)

Microvascular endpoints

Microvascular endooints

ee00-0eg

3

UKPDS-PTM

Microvascular benefit persists

UKPDS 33. Lancet (1998); 352:854-865

9

6

Time since Randomization (yrs)

12

UKPDS 80. NEJM (2008); 359:1577-1589

Meta-analysis: renal outcomes after intensive glucose control

- 7 RCTs of intensive vs. conventional glucose control (Kumamoto, UKPDS, VADT, ACCORD, ADVANCE, VADT)
- Outcomes
 - Surrogate outcomes: Micro-, macroalbuminuria
 - Clinical outcomes: Cr doubling, ESRD, renal death

Pooled risk ratios for renal endpoints

Event	Risk Ratio (95% CI)
Microalbuminuria	0.86 (0.76 – 0.96)
Macroalbuminuria	0.74 (0.65 – 0.85)
Cr doubling	1.06 (0.92 – 1.22)
ESRD	0.69 (0.46 – 1.05)
Renal death	0.99 (0.55 – 1.79)

BUT...interpret with caution

Characteristics of included trials

	n	Duration DM (yrs)	Duration f/u (yrs)
Kumamoto	110	6.5	8
UKPDS 33	3867	0	11.1
UKPDS 34	753	0	10.7
VADT Feasibility	153	8	2
ACCORD	10251	10	5
ADVANCE	11140	8	5
VADT	1791	12	5.6

Key clinical outcomes primarily influenced by shortest trials

Test for overall effect z = 0.03; P = .98

HbA1c and macrovascular outcomes

Modifiable CHD Risk Factors

Stepwise selection of major risk factors for 280 coronary artery disease events in 2,693 UKPDS patients @ 10 years

	р
↑ LDL cholesterol	0.000014
↓ HDL cholesterol	0.00014
↑ Haemoglobin A _{1c}	0.0022
Systolic blood pressure	0.0065
+ Smoking	(0.056)

Age and gender also major risk factors but HDL displaced triglyceride as a significant risk factor

Intensive control *may* decrease macrovascular complications

Meta-analysis:

glucose control and macrovascular disease

Diabetologia (2009); 52:2288-2298

Meta-analysis: Intensive glucose control & mortality

Diabetologia (2009); 52:2288-98

HbA1c as a surrogate marker?

Definition of a surrogate marker

- 1. An objective measure (laboratory measurement or physical sign) used as a substitute for a clinically meaningful endpoint that directly measures how a patient feels, functions, or survives
- 2. Changes induced by a therapy on the surrogate marker are expected to reflect changes in the clinically meaningful endpoint

Prentice Criteria

- 1. Surrogate correlates with the true clinical outcome
- 2. Fully captures the net effect of treatment on the clinical outcome

Performance of HbA1c as a surrogate endpoint

Important clinical outcomes

- Microvascular complications
 - Decrease in vision, blindness
 - Ulcers, amputations
 - End stage renal disease
- Macrovascular complications
 - Myocardial infarction
 - Stroke
 - Unstable angina
- Death

- Highly associated
- Therapy changes marker & outcome (causal)
- Prentice criteria—does not fully capture effect
- Weaker association
- Weaker impact of therapy
- Prentice criteria—not met
- Weak association
- No effect of therapy
- Prentice criteria—not met

Advocating rational use of HbA1c as a surrogate endpoint

- There is a role for the informed use of HbA1c for *microvascular disease*, although it does not capture the totality of risk due to multifactorial etiology
- Alone, HbA1c is not an appropriate surrogate for macrovascular disease—conventional risk factors are a better choice. However, HbA1c measures a small, but statistically significant effect of glucose on CV disease
- HbA1c as a surrogate should not be abandoned just because the relationships are not simple
- Measure "hard" outcomes when possible

Conclusions

• Surrogate endpoints DO have a role in evaluating DM therapies

Where long-term outcomes trials are not possible/feasible/completed

- HbA1c measures a clinically significant relationship between glucose control and micro- and macro-vascular outcomes
- These relationships are on the causal pathway
- There is "pecking order" for the effect size
 - Micro>macro>death
- Surrogate endpoints must be used judiciously and interpreted appropriately and can never fully substitute for measuring the true clinical outcome

CVD Risk Factors are Continuous, not Dichotomous

