Thyroid disorders – what's new?

Mark Vanderpump Royal Free Hampstead NHS Trust

Copenhagen Consensus 2008 Costs and benefits of proposals for confronting ten great global challenges

•	1 Micronutrient supplements for children (vitamin A and zinc) (60)	Malnutrition
•	2 The Doha development agenda (0)	Trade
•	3 Micronutrient fortification (iron and salt iodization) (286)	Malnutrition
•	4 Expanded immunization coverage for children (1,000)	Diseases
•	5 Bio fortification (60)	Malnutrition
•	6 Deworming and other nutrition programs at school (27) Malnutrit	ion/Education
•	7 Lowering the price of schooling (5,400)	Education
•	8 Increase and improve girls' schooling (6,000)	Women
•	9 Community-based nutrition promotion (798)	Malnutrition
•	10 Provide support for women's reproductive role (4,000)	Women

(Annual cost in million USD)

Figure 3.2: National iodine nutrition based on median UI in Europe

Moderate iodine deficiency (20-49 µg/l), 1 country

Mild iodine deficiency (50-99 µg/l), 10 countries

Optimal (100-199 µg/l), 20 countries

Risk of iodine-induced hyperthyroidism (200-299 µg/I), I country

No data

Figure 1 Areas of England and Wales where endemic goitre has been prevalent in the past.²⁴.

Table 1. Prevalence of a miodarone-induced thyroid dysfunction in areas of different environmental iodine intake and underlying thyroid status.^{1,2}

	Geographical iodine status		
	Sufficient (%)	Deficient (%)	
Prevalence of AIH	22	5	
Prevalence of AIT	2	10	

	Type I	Type II
Useful tests		
Goitre (diffuse of nodular)	Often present	Often absent
Thyroid Auto-antibodies	Often present	Often absent
Colour flow Doppler sonography	Pattern I–IV	Pattern 0
Less useful tests		
Interleukin-6 levels	Often normal	>2-fold of
		upper normal
24-h RAI uptake	>3%	<1%
Response to perchlorate within 8 weeks	Yes	No
Other characteristics		
Response to steroids within 4 weeks	No	Yes
Subsequent hypothyroid	No	Yes

Table 2. Some characteristic differences between type I and type II AIT

Prevalence of Amiodarone-induced thyrotoxicosis (Bogazzi et al, 2007)

Proportion of patients remaining thyrotoxic during the first 40 days of therapy

Bogazzi, F. et al. J Clin Endocrinol Metab 2009;94:3757-3762

 $Fig. \ 2 \ Structures \ of \ T_4 \ (a), \ T_3 \ (b), \ rT_3 \ (c), \ amio \ darone \ (d), \ DEA \ (e) \ and \ drone \ darone \ (f) \ (Source: \ http://pubchem.ncbi.nlm.nih.gov).$

Dronadarone

- Non-iodinated benzofuran derivative
- Less lipophilicity due to methane sulphonyl group, shorter t1/2
- Multi-channel blocking effects and antiadrenergic properties
- Antagonist of $TR\alpha_1$ and $TR\beta_1$ isoforms
- Little impact on thyroid hormones
- Minor TSH changes of no significance
- Marginally less effective at preventing recurrence of AF and caution in CCF

- TR α and TR β
 - Sensitive to ligand availability
 - +ve and -ve target gene responses
 - Spectrum of sensitivity to T3
 - Expression varies during development & between tissues
 - T3 responses tightly regulated and tissuespecific

Thyroid hormone action

Yen 2001 Physiol Rev 81:1097-11142 Harvey & Williams 2002 Thyroid 12:441-446

TR isoform-specific target tissues

KB-2115 (Eprotirome)

KB-2115

- TRβ-selective agonist
- Tissue-selective uptake in liver

3 Phase 2 trials of TR modulator in humans

- Dose related reductions
 - LDL cholesterol (40% after 1 week versus 11% response to placebo)
 - Total cholesterol and apoB (similar responses)
- No effect on TGs, lipoprotein (a), BMR or weight
- Increased bile acid synthesis independent of cholesterol synthesis
 - Mechanism different to statin
- No apparent adverse events or effects on heart, bone or TSH suppression
- 3 trials: Epiterome alone, +statin, + ezetimide
- 21-26% reduction in LDL

British Thyroid Association

The British Society of Paediatric Endocrinology and Diabetes

Endorsed by the Royal College of General Practitioners

Society for Endocrinology

The Diagnosis and Management of Primary Hypothyroidism

Royal College

of Physicians

Setting higher medical standards

A statement made on behalf of

The Royal College of Physicians in particular its Patient and Carer Network and the Joint Specialty Committee for Endocrinology & Diabetes

The Association for Clinical Biochemistry

The Society for Endocrinology

The British Thyroid Association

Iodothyronine deidonase isoenzymes

D2 is major source of plasma T3 in euthyroidism

	extrathyroidal T3 production	D1 mediated	D2 mediated	
hypothyroidism	7 nmol/day	29%	71%	
euthyroidism	44 nmol/day	34%	66%	
hyperthyroidism	224 nmol/day	67%	33%	

TAO and Etanercept

- 56-year old women diagnosed 20 years ago with hypothyroidism post-partum
- On T4 100mcg daily many years
- Diagnosed rheumatoid arthritis 2005
- Commenced on Etanercept May 2008
- Within 1 month, eye pain and oedema and right proptosis
- MRI scan increased retrorbital fat
- ?significance of anti-TNF-α effect

Method of action	Name	Structure	Target	Current experience in patients with TAO	FDA-approved indications ^a
B-lymphocyte depletion	Rituximab (Rituxan®/MabThera®)	Monoclonal antibody	CD20	El Fassi, 2006 ($n=2$) (64) Salvi, 2007 ($n=7$) (65) ^b	Non-Hodgkin B-cell lymphomas, RA
B-cell Survival	Belimumab (LymphoStat-B [®])	Monoclonal antibody	BAFF ^c	v , v - ,	None
Inhibition of T-lymphocyte activation	Abatacept (Orencia®)	CTLA-4/ immunoglobulin fusions molecule	CD28	None	RA
Anticytokines	Etanercept (Enbrel®)	TNF-receptor/ immunoglobulin fusion molecule	TNF-α	Paridaens, 2005 (n=10) (80)	RA, juvenile RA, ankylosing spondylitis, psoriatic arthritis, plaque psoriasis
	Infliximab (Remicade [®])	Monoclonal antibody	TNF-α	Durrani, 2005 (n=1) (81)	RA, psoriatic arthritis, plaque psoriasis, Crohn's disease, ulcerative colitis
	Adalimumab (Humira®)	Monoclonal antibody	TNF-α	None	RA, juvenile RA, ankylosing spondylitis, psoriatic arthritis, plaque psoriasis Crohn's disease
	Tocilizumab (Actemra®) Anakinra (Kineret®)	Monoclonal antibody IL-1 receptor antagonist	IL-6 IL-1	None None	None RA

TABLE 1. SELECTED BIOLOGICAL AGENTS IN CLINICAL TRIALS OR WITH POTENTIAL FOR TREATING TAO

Cytokines in TAO

- Orbital connective tissue remodelling cytokine-dependent fibroblast activation
- Accumulation of GAG
- Infiltration mast cells/T and B cells
- TNFα and IL1 stimulate ICAM1/GAG
- IL1 promotes whilst TNFα inhibits adipogenesis in vitro

(Cawood et al, Eur J Endo 2006)

Radioiodine effects on TAO (Traisk et al, JCEM 2009)

- Multicentre randomised trial in Graves' disease pts: I131 (n=163) and ATDs (n=150)
- Early use of T4
- At 1 year follow-up risk of de novo TAO was 31% of I131 pts and 16% of ATD
- Worsening in those with pre-existing disease was not more common in I131
- Smoking influenced risk of TAO
- Pre-treatment FT3 and TSHRAb titre?

Worsening of pre-existing TAO and de novo development of TAO

Revised ATA guidelines (Thyroid, 2009)

- U/S characteristics of nodules and what to FNA?
- Extent of surgery and role of prophylactic neck dissection
- Remnant ablation patient selection and use of rhTSH
- Assessment of cure low/high risk
- TG and U/S in monitoring long-term
- T4 therapy and TSH suppression

Prognostic value of BRAF V600E

years	of	fol	low	-up

Clinical features	Odds	95% CI	p-value
	ratio		
Age at diagnosis >60	1.25	0.08-19.28	0.87
Tumor Size (continuous variable)	0.51	0.25-1.04	0.06
De Groot's classes	10.97	0.72-166.84	0.08
Stage (TNM)	1.02	0.89-1.16	0.73
VEGF (score 2-3)	1.20	0.95-1.51	0.12
Vascular invasion	0.97	0.10-9.00	0.98
BRAF mutation	14.63	1.28-167.29	0.03

N=102 PTC

Elisei, JCEM 2008

Tyrosine kinase inhibitors

Compound	Target	Published	Author	# DTC	CR/PR/SD
Gefitinib	EGFR	Thyroid 2007	Pennell	25	12%
Axitinib	VEGFR	J Clin Oncol 2008	Cohen	45	73%
Motesanib	RET- PDGF – VEGFR-KIT	NEJM 2008	Sherman	93	12%
Sorafenib	RET-RAS- RAG- VEGF- VEGFR- PDGF-cKIT	J Clin Oncol 2008	Gupta	30	23%
		J Clin Oncol 2009	Kloos	52	15%
		Eur J Endocrinol 2009	Smit	32	24%

Summary

- UK appears to now be iodine deficient
- Use steroids early in Amiodaroneinduced thyrotoxicosis
- Thyroid hormone analogues may be future addition to statin therapy in DM
- T4 remains only treatment for hypothyroidism
- No new therapies for TAO but cautious with I131 in Graves' and use steroids
- Ongoing trials of TK inhibitor therapies for non-responsive patients with DTC