

AUTUMN MEETING Hotel Russell, London 28th November 2008

AUTUMN MEETING Hotel Russell, London 28th November 2008

Angiotensin II Plays a Central Role in Organ Damage

LV = left ventricular; MI = myocardial infarction; GFR = glomerular filtration rate

Adapted from Willenheimer R et al *Eur Heart J* 1999; 20(14): 997–1008, Dahlöf B *J Hum Hypertens* 1995; 9(suppl 5): S37–S44, Daugherty A et al *J Clin Invest* 2000; 105(11): 1605–1612, Fyhrquist F et al *J Hum Hypertens* 1995; 9(suppl 5): S19–S24, Booz GW, Baker KM *Heart Fail Rev* 1998; 3: 125–130, Beers MH, Berkow R, eds. *The Merck Manual of Diagnosis and Therapy*. 17th ed. Whitehouse Station, NJ: Merck Research Laboratories 1999: 1682–1704, Anderson S *Exp Nephrol* 1996; 4(suppl 1): 34–40, Fogo AB *Am J Kidney Dis* 2000; 35(2):179–188

Diabetic Nephropathy

40%

CKD & CVD screening?

Proteinuria Is an Independent Risk Factor for Mortality in Type 2 Diabetes

Event Rate of Renal Endpoints Stratified by Albuminuria Change Baseline to 6 Months

RENAAL: CV End-Points By Change in Proteinuria

Renal dysfunction is a risk factor for adverse CV Outcomes

CV death or HF hospitalisation in CHARM

Receptor-bound Prorenin Generates Ang II in the Tissues

- How are these effects mediated?
 - Studies suggest that receptor-mediated prorenin activation leads to tissue synthesis of Ang II¹⁻⁴

Harmful effects

¹Ichihara et al. J Clin Invest 2004;114:1128–35 ²Ichihara et al. J Am Soc Nephrol 2006;17:1950–61 ³Ichihara et al. Hypertension 2006;47:894–900 ⁴Saris et al. Hypertension 2002;39:573–7

Activation of MAPK Cell Signalling Pathways in Cell Culture by Renin

- Binding of renin to the prorenin receptor activates cell signalling pathways and may lead to increased tissue fibrosis and cellular hypertrophy¹⁻³
 - Activation of cell signalling is independent of Ang II generation⁴

MAPK=mitogen-activated protein kinase PAI-1=plasminogen activator inhibitor-1

Renin / Prorenin

- Renin receptor, localized in brain, heart, kidney, liver (vasculature)
- Renin and prorenin bind to the renin receptor
- Renin receptor activation induces 4 to 5 increase in AGT to Ang1.
 - Intracellular signaling: e.g. MAP kinases

Elevated Glucose leading to Renin release GPR91 is the link

Renin inhibition acts at the Renin System's point of activation and neutralizes the PRA rise

Elevated Glucose leading to Renin release GPR91 is the link

Gene expression of (pro)renin receptor in TG(mRen-2)27 diabetic rats, with or without Aliskiren

Glomerulosclerosis in control and diabetic Ren-2 rats, treated or not with aliskiren and perindopril.

diabetic Ren-2 rats, treated or not with aliskiren and perindopril.

Control

Diabetes

DM+Perindopril

DM+Aliskiren

Peak RPF Responses to Aliskiren

aliskiren dose (mg)

Rise in Renal Plasma Flow: captopril vs. aliskiren

With a half life of 40 hours – BP reductions are sustained over 24 hours

Trough to peak ratio:

150 mg	0.64
300 mg	0.98
600 mg	0.86

ALISKIREN- diabetic animals/in vitro conditions

- Reduces numbers of (pro)renin receptors in the kidney
- Mitigates profibrotic activity in the kidney
- Nearly abolish glucose apoptotic effects on podocytes
- JASN 2007,18:61a;168a;169a

Impact of Aliskiren (DRI) on angiotensin Ilinduced cardiovascular damage

- DRI profoundly reduces atherosclerosis in mice (fat-fed LDL-receptor-deficient)
- DRI reduces TNF-α, CRP and complement activation in double transgenic rats (renin, angiotensinogen genes)
- DRI reduces arrhythmia in double transgenic rats.

Patients with hypertension, stable HF, BNP levels >100 pg/mL

Significant reduction in BNP levels

mean±SEM

Pre-specified safety assessments

Assessment, n (%)	Placebo (n=146)	Aliskiren 150 mg (n=156)
Renal dysfunction	2 (1.4)	3 (1.9)
Symptomatic hypotension	2 (1.4)	5 (3.2)
Hyperkalaemia	7 (4.8)	10 (6.4)
Any of the above	11 (7.5)	17 (10.9)

Aliskiren significantly reduces UACR from baseline in patients with diabetes and albuminuria

Study 2243 primary endpoint: Change from baseline in UACR

A double-blind, randomized, placebo-controlled study in hypertensive patients with type 2 diabetes and nephropathy

Baseline laboratory variables were similar in the two treatment groups

Characteristic	Aliskiren (n = 301)	Placebo (n = 298)
Mean sitting blood pressure, mmHg		
Systolic	135 ± 12	134 ± 12
Diastolic	78 ± 8	77 ± 9
UACR, mg/g	513 (463–569)	553 (502–609)
UAER, μg/min	495 (440–557)	520 (469–576)
Estimated GFR, mL/min/1.73 m ²	68.5 ± 25.7	66.8 ± 24.5

Effect of aliskiren and placebo on blood pressure throughout the course of the study

Changes in UACR with aliskiren and placebo throughout the course of the study

Data are shown as change from baseline in geometric mean (95% CI) Baseline was the week –2 value UACR, urinary albumin:creatinine ratio

Aliskiren significantly reduced UACR from baseline to week 24 endpoint compared with placebo

^{*}p = 0.0009
Data are shown as percentage change in geometric mean
Baseline was week −2 value
UACR, urinary albumin:creatinine ratio

Changes in UAER with aliskiren and placebo throughout the course of the study

Data are shown as change from baseline in geometric mean (95% CI) Baseline was the week –2 value UAER, urinary albumin excretion rate

Aliskiren enabled significantly more patients to achieve a ≥ 50% reduction in UACR from baseline compared with placebo

Aliskiren provided greater reductions in UACR than placebo across different patients subgroups

Data are shown as geometric mean with 95% CI for the ratio of the treatment effect for aliskiren:placebo GFR was calculated using the Modification of Diet in Renal Disease formula eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; UACR, urinary creatinine:albumin ratio

Aliskiren treatment preserved estimated GFR during the study

Estimated GFR at baseline and week 24 endpoint (mL/min/1.73 m²)

Baseline was day 1 value GFR values were calculated using the Modification of Diet in Renal Disease formula GFR, glomerular filtration rate

Addition of aliskiren to losartan and optimal antihypertensive therapy was generally well tolerated during the study

	Aliskiren (n = 301)	Placebo (n = 298)
Any adverse event, n (%)	201 (66.8)	200 (67.1)
Any serious adverse event, n (%)	27 (9.0)	28 (9.4)
Discontinuations due to adverse events, n (%)	17 (5.6)	19 (6.4)
Deaths, n (%)	0	2 (0.7)
Adverse events reported by ≥ 5% of patients in either t	treatment group, n (%)	
Headache	18 (6.0)	11 (3.7)
Nasopharyngitis	18 (6.0)	15 (5.0)
Dizziness	15 (5.0)	10 (3.4)
Hyperkalemia	15 (5.0)	17 (5.7)
Peripheral edema	13 (4.3)	23 (7.7)

Aliskiren provides renoprotective benefits in hypertensive type 2 diabetes patients with nephropathy, independent of BP lowering

- The study met its primary objective aliskiren + losartan provided a significant additional 20% reduction in UACR at week 24 endpoint compared with losartan + placebo
 - At week 12, aliskiren 150 mg significantly reduced UACR by 11% (p < 0.02) compared with losartan + placebo
- Aliskiren + losartan resulted in 25% of patients achieving a UACR reduction of ≥ 50% compared with 12.5% receiving placebo + losartan
- Aliskiren was generally well tolerated
 - The frequency of serum creatinine > 2.0 mg/dL was significantly higher in the placebo group than in the aliskiren group, whereas hyperkalemia (≥ 6.0 mEq/L) was higher with aliskiren than placebo
- BP was similar between treatment groups, suggesting that the renoprotective effects of aliskiren were independent of BP lowering

The Steno-2 Study

IMPACT OF TARGET DRIVEN MULTIFACTORIAL INTERVENTION ON CARDIOVASCULAR DISEASE IN MICROALBUMINURIC PATIENTS WITH TYPE 2 DIABETES

Peter Gæde
Pernille Vedel
Nicolai Larsen
Gunnar VH Jensen
Hans-Henrik Parving
Oluf Pedersen

Steno Diabetes Center

Steno-2: Design

- Pre-planned endpoint examinations at 4, 8 years after randomization and after 60 cases of mortality
- Interventional part of study ended after 8 years

Risk markers during follow-up

Microvascular complications

End-stage renal failure requiring dialysis

5000

6000

1000

0

dialyserisktid

3000

4000

2000

6 patients in the original conventionally treated group versus 1 patient in the intensively treated group progressed to end-stage renal disease requiring dialysis treatment

log-rank p=0.039

Steno-2 Extension Study: Mortality

Steno-2 Extension Study: Mortality

24 patients died in the intensive group compared to 40 patients in the conventional group

HR = 0.54 (0.32-0.89), P=0.015

30% of patients died in the intensive group compared to 50% of patients in the conventional group

Absolute risk reduction = 20%

Steno-2 Extension Study: CVD Mortality

9 patients died of CVD in the intensive group compared to 19 patients in the conventional group

HR = 0.43 (0.19-0.95), P=0.036

11% of patients died in the intensive group compared to 24%of patients in the conventional group

Absolute risk reduction = 13%

Steno-2 Extension Study: Any CVD

Percentage of patients with a major CVD event during follow-up

Intensive

Steno-2 Extension Study: Any CVD

25 patients had a CVD event in the intensive group compared to 48 patients in the conventional group

HR = 0.41 (0.25-0.67), P=0.0003

31% of patients had a CVD event in the intensive group compared to 60% of patients in the conventional group

Absolute risk reduction = 29%

Steno-2 Post Trial: Any CVD

51 major CVD events in 25 patients (31%) occurred in the intervention group compared to 158 events in 48 patients (60%) in the conventional group

Steno-2: Number needed to treat

Number of patients with type 2 diabetes needed to treat for 13.3 years to prevent one

Death 5 patients

Cardiovascular death 8 patients

Major cardiovascular event 3 patients

Progression to nephropathy 5 patients

Dialysis 16 patients

Laser treatment 7 patients

Steno-2: Major clinical results

- A 50 % relative risk reduction in microvascular disease after 4 years of intervention maintained throughout the rest of follow-up
- A 50 % relative risk reduction in major cardiovascular events after 8 years of intervention maintained throughout the rest of follow-up
- A 50 % relative reduction in mortality after 13 years of follow-up

Study 2242 – Design

Patients with type 2 diabetes, hypertension and albuminuria received stable doses of furosemide throughout the study

UACR: Morning spot urine on Day 1–56

24-hour BP: Day 3, 7, 14, 28, 31, 35, 42, 56

Mean baseline UACR = 173 mg/day

Additional data in diabetic patients

Study 2242:

Anti-proteinuric effect of aliskiren in patients with hypertension and Type 2 diabetes

Study 2242 – Aliskiren provides significant reductions from baseline in mean 24-hour SBP

Mean change from baseline in mean 24-hour SBP (mmHg)

Name Name

Furosemide