Inflammation an oxidative stress in diabetes?

Naveed Sattar Professor of Metabolic Medicine Hon. Consultant in Clinical Biochemistry

ABCD meeting October 2005

UNIVERSITY *of* GLASGOW

Outline

- Oxidative stress (free radicals) – Any clinical value of antioxidants
 Inflammation and diabetes
 - Any clinical use of CRP

Light overview

Why does oxygen damage? O² metabolism: - Creates free radicals - Not prejudicial -Interact with nearest molecule

Not all free radical are bad!

So what protects us from oxidative stress?

 endogenous enzymes SOD Catalase
 circulating molecules albumin urate bilirubin

exogenous vitamin C tocopherols carotenoids flavanoids

Homeostasis

Why lots of oxidative stress in diabetes?

Oxidative stress linked to all diabetes complications

Rahmi et al Biomed and Pharmacotherapy 2005

Hyperglycaemia with uraemia: double trouble

Krane & Wanner (2002) NDT

Oxidative stress

Antioxidants

Aging chronic diseases - CHD - Diabetes

Maintain health

Theory!

Vitamin supplements

Uncontrolled prospective studies

US Nurses health study follow-up

>100 IU/d vitamin E for ≥2 years significantly lowered risk of coronary events in males and females

"Vitamin supplements for all"

However!

Primary prevention Project - Italian [Lancet Jan 2001] 4495 age 64.4 with with CHD risk factors

Aspirin

3.6 years

Vitamin E 300 mg/d

Vitamin E

β carotene

CHD end-points

Stroke

All cause mortality

Other end-points

Specific studies of antioxidants in diabetes

Thioctic acid (a-lipoic) and diabetic neuropathy

- Water and lipid soluble
 - Disulphide bond
 - Works at level of mitochondria
 - Esp. well at peripheral nerves
- 7 trials: recent meta-analysis n=1258 in RCTs
 - Significant benefit
 - Methods sub-optimal
 - Large USA trial on the go "NATHAN"

Ziegler Treat Endocrinol 2004

Where now for oxidation hypothesis?

"give earlier" "higher doses" "give for longer" "wrong choice of antioxidants"

MAY work in some diseases

- pre-eclampsia (large trials ongoing)
- haemodialysis
- HIV
- Diabetic neuropathy?

Oxidative hypothesis – summary so far

 ¹ oxidative stress in diabetes – downstream of other pathways

- Supplementation with antioxidants of unproven benefit
- Stick with glycaemic control, lifestyle improvements & proven therapies

Outline

Oxidative stress

Any clinical value of antioxidants

Inflammation and diabetes

Any clinical use of CRP

Inflammatory marker in clinical use

CRP as marker of inflammatory activity

hs-CRP and Risk of Future Cardiovascular Events in Apparently Healthy Women

Ridker. Circulation. 1998;98:731–733.

Cellular and molecular make up of unstable plaques

CRP, IL-6, IL-15, IL-18, MMPs etc Relative Ris Middle-Age

Lipoprotein Homocyste Total Chole Fibrinogen tPA Antiger TC/HDL-C hs-CRP hs-CRP + T

Adapted from Ric

John Danesh et al.

C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease NEJM 2004

Confounding factors

Adipocytes circa 1990

Adipocytes are sexy!

Visser M et al. NHANES 1988-1994 JAMA 1999;282:2131-2135.

Lifestyle factors

- Obesity
- Sedentary behav.
- Poor diet
- Low social class
- Race

Inflammation and diabetes

 Do inflammation markers predict diabetes?

 Any evidence that lessening inflammation improves insulin sensitivity?

CRP goes up with:

- Age
- Obesity
- Low physical activity
- FH diabetes
- South Asians
- Others
 - PCOS
 - High GI diet

South Asians and CRP

Forouhi NG, Sattar N, McKeigue P. Int J Obesity 2001;25:327-31.

Does CRP predict new diabetes

	139 subsequent diabetes	All 5,974 subjects
Age (years) Glucose (mmol/l)	55.6 (5.7) 5.49 (0.69)	55.2 (5.5) 4.72 (0.51)
Body Mass Index (kg/m²)	27.7 (3.0)	25.9 (3.1)
Ln sensitive CRP [In(mg/I)]	1.05 (0.90)	0.53 (1.08)

Diabetes risk by CRP quintiles (mg/l)

Adjusted Hazard Ratio

Kaplan-Meier curve

Freeman DJ, Norrie J, Gaw A, Ford I, O'Reilly DS, Packard CJ, Sattar N; Diabetes. 2002

Multivariate Predictors of Diabetes in WOSCOPS

Freeman DJ, Norrie J, Gaw A, Ford I, O'Reilly DS, Packard CJ, Sattar N. Diabetes 2002

Inflammation ↔ IR?

Plausible Mechanisms?

LOCAL FAT TO INFLAMMATON TO INSULIN RESISTANCE

Insulin resistance may lead to inflammation

Many existing vascular risk reduction modalities are anti-inflammatory

Lifestyle alterations	Pharmacological methods	
Weight loss	Statins	
Exercise	Aspirin at high doses	
Smoking cessation	ACE inhibitors	
Improved diet	PPAR _γ activators	
Regular modest alcohol!	Metformin	

Conclusions on inflammatory markers

- Low grade inflammation (e.g. high CRP)
 - Linked to many factors, particularly obesity
 - predicts diabetes and metabolic derangement
 Causality not established
- Future
 - trials of specific anti-inflammatory agents
 - genotype studies (G Davey-Smith et al Lancet)
 - may help dissect causality

Meantime

Acknowledgements

Glasgow

Chris Packard Jim Shepherd lan Ford **Dilys Freeman** San Antonio **Steven Haffner** Ken Williams **Montreal** Allan Sniderman London Nita Forouhi Paul McKeigue **Atul Singhal Peter Whincup** Helsinki Hannele Yki-Jarvinen

