

Presenter Disclosure Information

M. Angelyn Bethel

Divisional Research Funding:

Astra Zeneca, Merck & Co. Inc., GlaxoSmithKline

Honoraria:

Astra Zeneca, Boehringer Ingelheim, NovoNordisk, GlaxoSmithKline, Merck & Co. Inc.

Glycemic Control: Benefits and Challenges

Good glycemic control

- Reduces the risk of microvascular complications
- Modestly reduces the risk of macrovascular complications
- Usually requires multiple therapies over time due to progression of disease

Effects of Antihyperglycemic Therapies

- Many drug classes available but concerns raised about possible off-target effects:
 - Increased cardiovascular event rates, heart failure events
 - Pancreatitis and malignancy
- International regulatory agencies require that all new antihyperglycemic agents demonstrate glucose lowering AND exclude clinically meaningful increases in major adverse cardiovascular events

Glucagon-Like Peptide-1 (GLP-1) and Glucose-dependent Insulinotropic Peptide (GIP) are Incretin Hormones

GLP-1

Is released from L cells in ileum and $colon^{1,2}$

Stimulates insulin response from beta cells in a glucose-dependent manner¹

Inhibits gastric emptying^{1,2}

Reduces food intake and body weight²

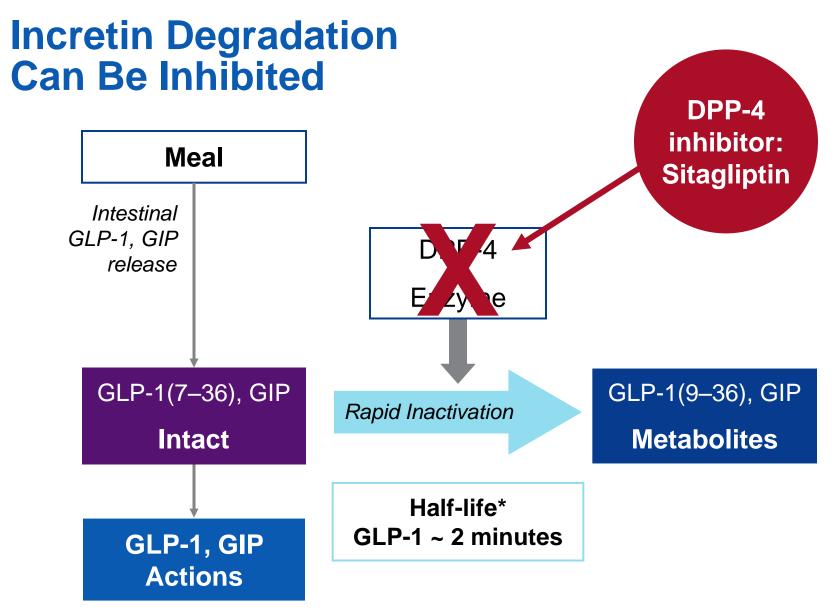
Inhibits glucagon secretion from alpha cells in a glucose-dependent manner¹

GIP

Is released from K cells in duodenum^{1,2}

Stimulates insulin response from beta cells in a glucose-dependent manner¹

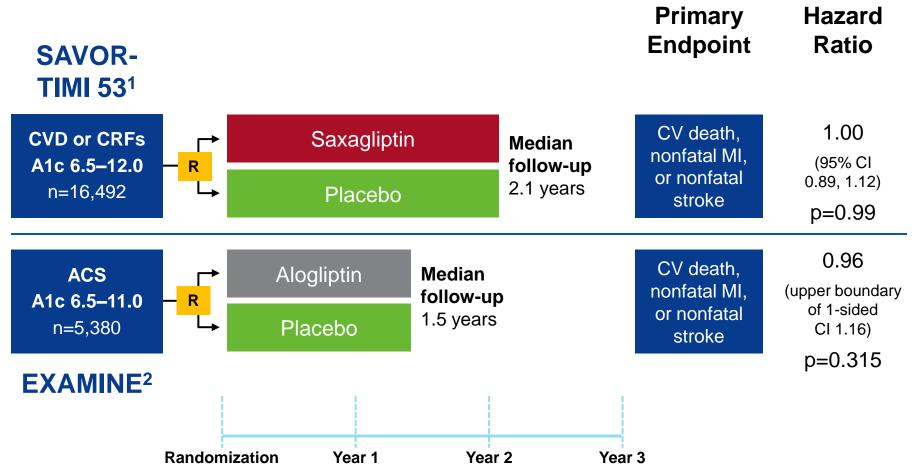
Has minimal effects on gastric emptying²


Has no significant effects on satiety or body weight²

Does not appear to inhibit glucagon secretion from alpha cells^{1,2}

2. Drucker DJ. Diabetes Care 2003; 26: 2929–2940.

^{1.} Meier JJ et al. Best Pract Res Clin Endocrinol Metab 2004; 18: 587–606.



1. Deacon CF et al. Diabetes 1995; 44: 1126–1131.

2. *Meier JJ et al. Diabetes 2004; 53: 654-662.

Completed Cardiovascular Outcomes Studies for DPP-4 Inhibitors

EXAMINE = Examination of Cardiovascular Outcomes: Alogliptin vs Standard of Care in Patients With Type 2 Diabetes Mellitus and Acute Coronary Syndrome; SAVOR-TIMI 53 = Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus Trial-Thrombolysis in Myocardial Infarction

- 1. Scirica BM et al. N Engl J Med 2013; 369: 1317-1326.
- 2. White WB et al. N Engl J Med. 2013; 369: 1327–1335.

TECOS

- Initiated in advance of FDA requirements, but consistent with that guidance
- Large, international trial designed to assess the impact of sitagliptin (100mg) versus placebo on cardiovascular event rates
 - When added to usual diabetes care
 - Minimize difference in glycemia between groups
 - Dose adjusted for eGFR
- Randomized, double-blind, placebo-controlled
- Academically led in collaboration with industry sponsorship

Other Key Design Features

- Population: Type 2 DM & Secondary CV prevention
- Event driven, 1300 confirmed primary events
- Primary outcome (MACE+)
 - CV death
 - Nonfatal myocardial infarcion
 - Nonfatal stroke
 - Hospitalization for unstable angina
- Pre-specified CHF secondary outcome
- Independent blinded event adjudication

Major Inclusion Criteria

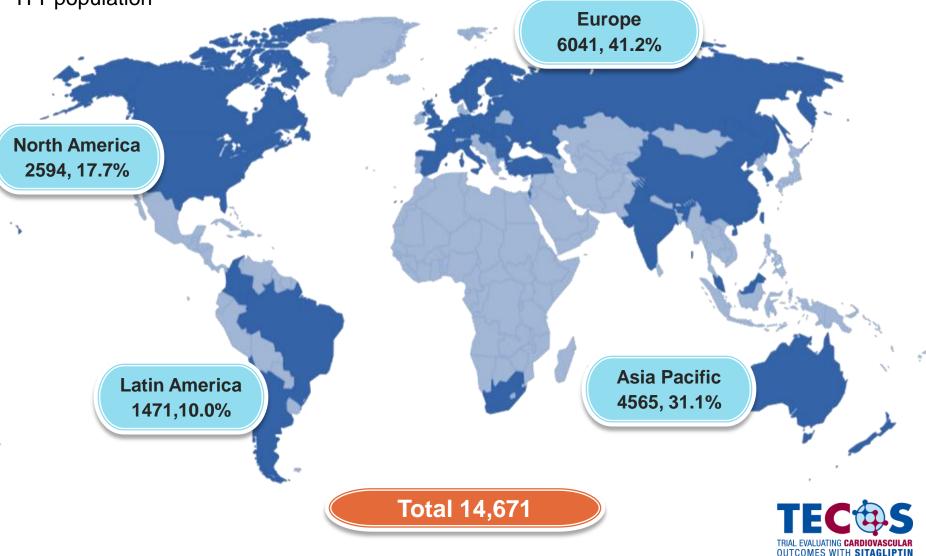
• **Type 2 diabetes** (A1c ≥6.5% and ≤8.0%)

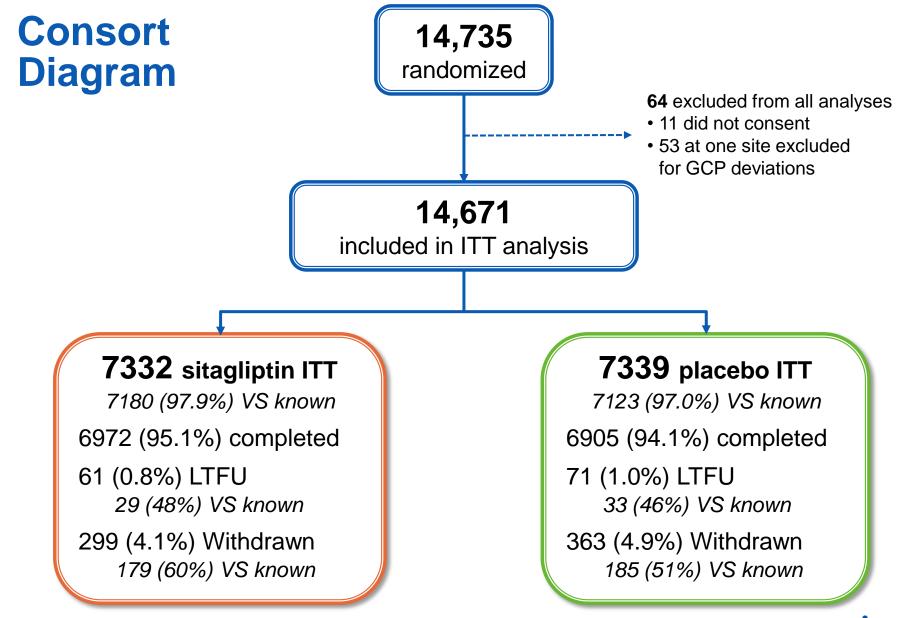
 Stable monotherapy OR dual combination therapy with metformin, pioglitazone, or sulfonylurea or *stable dose of insulin with or without metformin

≥50 years old

- Preexisting vascular disease defined as having:
 - History of myocardial infarction
 - Prior coronary revascularization
 - Coronary angiography with at least one ≥50% stenosis
 - History of ischemic stroke
 - Carotid arterial disease with ≥50% carotid stenosis
 - Peripheral arterial disease with objective evidence
- Able to see usual care provider at least twice yearly

Major Exclusion Criteria


- Type 1 diabetes or history of ketoacidosis
- History of ≥2 episodes of severe hypoglycemia during the 12 months prior to enrollment
- Estimated glomerular filtration rate (eGFR) <30mL/min/1.73 m²
- Use of another DPP-4 inhibitor, GLP-1 analogue, or thiazolidinedione other than pioglitazone in previous three months
- Cirrhosis of the liver
- Planned revascularization procedure
- Pregnancy or planned pregnancy



Recruitment: December 2008 – July 2012

= country involved in TECOS

ITT population

ITT = intention-to-treat; LTFU = lost to follow-up; VS = vital status, GCP = Good Clinical Practice TECOS TRIAL EVALUATING CARDIOVASCULAR OUTCOMES WITH SITAGLIPTIN

Baseline Characteristics

Characteristic	Sitagliptin n=7332	Placebo n=7339		
Age (years)	65.4 ± 7.9	65.5 ± 8.0		
Women	2134 (29.1%)	2163 (29.5%)		
Race				
White	4955 (67.6%)	5002 (68.2%)		
Black	206 (2.8%)	241 (3.3%)		
Asian	1654 (22.6%)	1611 (22.0%)		
Other	517 (7.1%)	485 (6.6%)		
Hispanic or Latino	886 (12.1%)	912 (12.4%)		
BMI (kg/m ²)	30.2 ± 5.6	30.2 ± 5.7		
eGFR (mL/min/1.73 m ²)*	74.9 ± 21.3	74.9 ± 20.9		

Values are mean ±SD for continuous variables or n,% for categorical variables. *MDRD formula used to calculate eGFR. Site-reported values are presented.

Baseline Characteristics— CV Risk Management

Characteristic	Sitagliptin n=7332	Placebo n=7339		
Systolic blood pressure (mmHg)	135 ± 16.9	135 ± 17.1		
Diastolic blood pressure (mmHg)	77.1 ± 10.3	77.2 ± 10.6		
Total cholesterol (mmol/L)	4.3 ± 1.2	4.3 ± 1.2		
LDL-C (mmol/L)	2.4 ± 1.7	2.3 ± 1.3		
HDL-C (mmol/L)	1.1 ± 0.3	1.1 ± 0.3		
Triglycerides (mmol/L)	1.9 ± 1.1	1.9 ± 1.1		
Medication				
Aspirin use	5764 (78.6%)	5754 (78.4%)		
Statin use	5851 (79.8%)	5868 (80.0%)		

Baseline Characteristics— Diabetes

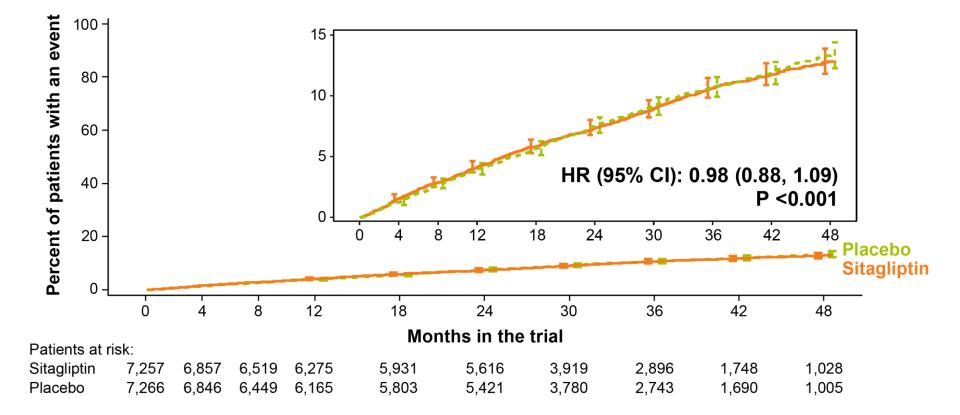
Characteristic	Sitagliptin n=7332	Placebo n=7339
Duration of diabetes (years)	11.6 ± 8.1	11.6 ± 8.1
HbA1c (%)	7.2 ± 0.5	7.2 ± 0.5
Medication taken alone or in combination		
Metformin	5936 (81.0%)	6030 (82.2%)
Sulfonylurea	3346 (45.6%)	3299 (45.0%)
Thiazolidinedione	196 (2.7%)	200 (2.7%)
Insulin	1724 (23.5%)	1684 (22.9%)
Median daily dose (units)	50 (33, 80)	50 (32, 80)
Monotherapy	3496 (47.7%)	3498 (47.7%)
Dual combination therapy	3766 (51.4%)	3768 (51.3%)

Values are mean ±SD or median (IQR) for continuous variables or n,% for categorical variables.

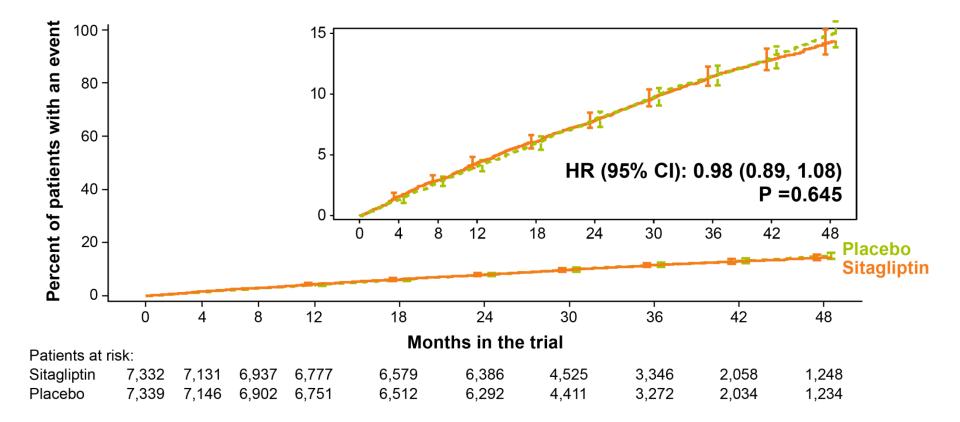
Glycemic Control Least Squares Mean HbA1c ± 1SD

Overall LS Mean difference -0.29% (-0.32, -0.27), p<0.0001 8.5 8.0 HbA1c (%) 7.5 -**Placebo** 7.0 Sitagliptin 6.5 6.0 12 24 36 48 0 4 ġ Study visit (months) # of Patients: Sitagliptin 7,325 6,779 6,485 6,454 6,110 3,524 1,434 Placebo 7,331 6,746 6,422 6,390 5,980 3,443 1,386

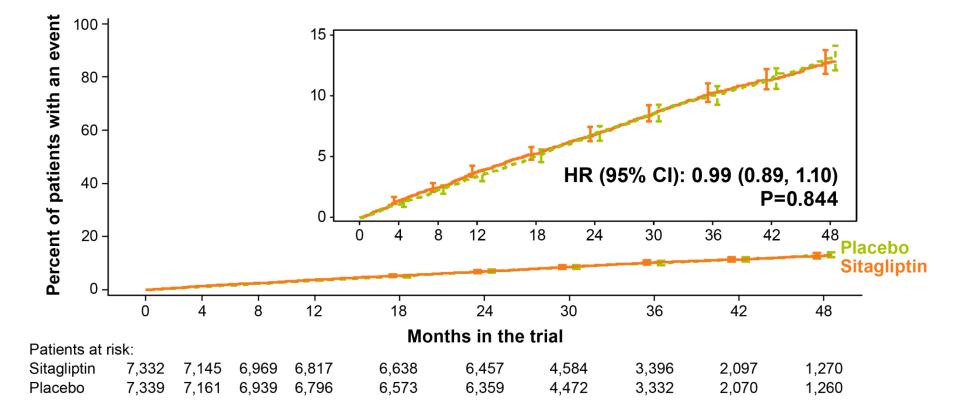
Severe Hypoglycemia*


ITT HR (95% CI): 1.12 (0.89–1.40), p=0.33

	Sitagliptin	Placebo		
	Participants with event n (%)	Participants with event n (%)		
	160 (2.2%)	143 (1.9%)		
Events per 100 patient-years	0.78	0.70		


Primary Composite Cardiovascular Outcome* PP Analysis for Non-inferiority

* CV death, nonfatal MI, nonfatal stroke, hospitalization for unstable angina


Primary Composite Cardiovascular Outcome* ITT Analysis for Superiority

* CV death, nonfatal MI, nonfatal stroke, hospitalization for unstable angina

Secondary Composite Cardiovascular Outcome* ITT Analysis for Superiority

* CV death, nonfatal MI, nonfatal stroke

SAVOR-TIMI 53, EXAMINE, and TECOS: MACE Events

	Study Drug n/N (%)	Placebo n/N (%)	Hazard Ratio	95% Cl			P Value
SAVOR-TIMI (saxagliptin vs. placebo)	613/8280 (7.4%)	609/8212 (7.4%)	1.00	0.89, 1.12	-	+	0.99
EXAMINE (alogliptin vs. placebo)	305/2701 (11.3%)	316/2679 (11.8%)	0.96	NA, 1.16	*	-	0.315
TECOS (sitagliptin vs. placebo)	745/7332 (10.2%)	746/7339 (10.2%)	0.99	0.89, 1.10		+	0.844
SAVOR + EXAMINE + TECOS	1663/18313 (9.1%)	1671/18230 (9.2%)	0.99	0.92, 1.06		•	
					0 Favors Treatment	1 Favors placebo	2
	Test f	or heter p=0	ogene .877, l ²		trials:		
 Scirica BM et al. N Engl J Med 2013 White WB et al. N Engl J Med 2013; Green JB et al. NEJM 2015; DOI: 10 	369: 1327–1335			onfidence			

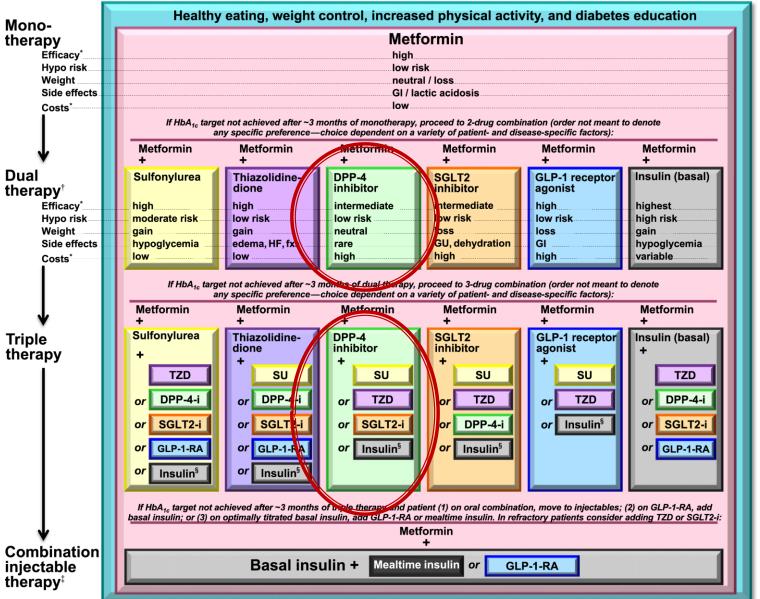
3. Green JB et al. NEJM 2015; DOI: 10.1056/NEJMoa1501352

given for EXAMINE trial

Summary of TECOS Results (1)

- TECOS was a *cardiovascular safety study* initiated ahead of the 2008 FDA guidance
- The study aimed for glycemic equipoise to minimize possible glycemic confounding effects on the outcomes of interest, with the result that there was only a small difference in the HbA_{1c} levels between the sitagliptin and placebo groups
- The utility of sitagliptin as a glucose-lowering agent was confirmed by the more frequent *initiation of insulin therapy* and the greater need for *additional antihyperglycemic agents* in the placebo group compared with the sitagliptin group

Summary of TECOS Results (2)


- Sitagliptin, compared with placebo, was *noninferior, and not* superior for the primary and secondary (MACE) composite cardiovascular outcomes
- The rate of *hospitalization for heart failure* did not differ between sitagliptin and placebo treatment groups
- Overall, confirmed events of acute pancreatitis were uncommon, but numerically more frequent in the sitagliptin group
- Overall, confirmed events of *pancreatic cancer* were uncommon, but numerically more frequent in the placebo group

Where does that leave us with DPP-4 inhibitors

ADA/EASD Position Statement

Diabetes Care 2015; 38: 140-149

What Do Providers and Patients Want from an Antihyperglycemic Medication? (1)

#1—Efficacy

 DPP-4 inhibitors are effective in the setting of optimal intended use, in combination with metformin early in the disease course.

#2—Tolerability

 DPP-4 inhibitors have long-standing reputation as arguably the best tolerated class of antihyperglycemic medication

What Do Providers and Patients Want from an Antihyperglycemic Medication? (2)

#3—Safety above all

- All DPP-4 inhibitors have demonstrated CV safety (MACE endpoints)
- Heart failure findings are inconsistent between completed trials
- Pancreatitis is uncommon overall, but more events occur with DPP-4 inhibitors.
 - Rate ~1 per 1000 patient years
 - Meta-analyses show a marginally statistically significant increase in pancreatitis, but should be interpreted with caution
 - Current recommendations to avoid DPP-4 inhibitors in those with a history of pancreatitis seem prudent
- Pancreatic cancer is uncommon, and rates do not increase with DPP-4 inhibitors

Acknowledgements

TECOS Executive Committee*

Rury Holman, Joint Chair Eric Peterson, Joint Chair Paul Armstrong John Buse **Robert Josse** Keith Kaufman Joerg Koglin Scott Korn John Lachin Darren McGuire Eberhard Standl Peter Stein Shailaja Suryawanshi Frans Van de Werf

* Robert M. Califf served as Joint Chair until taking up the post of deputy FDA commissioner on March 1, 2015

TECOS was conducted jointly by

...in an academic collaboration with

Patients and Sites

- We thank the patients, without whom this study and these analyses would not have been possible
- We also thank the many investigators and their staff from 673 sites in 38 countries who worked diligently to help ensure TECOS was run to the highest possible standards

Thank you