You Oughta Know

A YEAR IN THE DIABETES LITERATURE (MY TOP TEN)

DR JOHN LINDSAY CONSULTANT PHYSICIAN BELFAST HEALTH & SOCIAL CARE TRUST

Best Clinical Papers?

- Best conducted and reported study?
- Most original question and results?
- Progress for the patient?
- Most likely to be quoted?
- Highest impact factor?
- Relevance to specialist or generalist?
- Published by a friend of your group?

What a choice!

Epidemiology

- Type 1, Type 2 Diabetes
- Diabetes prevention/cure
- Complications
- Treatments
- Disease areas
- Future strategies

Overview-my top 10!

- Epidemiology
 - Type 1 Diabetes, Scotland & USA
- Diabetes cure/prevention
 - Stem cells in T1DM
 - Topiramate/phentermine & bariatric surgery in T2DM
- Treatments in T2DM
 - Sulphonylureas and DPP4 agents
- Impact on the patient
 - EU driving license and hypo reporting
- Pregnancy
 - Glycaemic targets and insulin pumps
- Future strategies
 - Bionic pancreas

Original Investigation

Estimated Life Expectancy in a Scottish Cohort With Type 1 Diabetes, 2008-2010

Shona J. Livingstone, MSc; Daniel Levin, MSc; Helen C. Looker, MBBS; Robert S. Lindsay, FRCP; Sarah H. Wild, FRCP; Nicola Joss, MD; Graham Leese, MD; Peter Leslie, MD; Rory J. McCrimmon, FRCP; Wendy Metcalfe, MD; John A. McKnight, FRCP; Andrew D. Morris, FRCP; Donald W. M. Pearson, FRCP; John R. Petrie, MD; Sam Philip, MD; Naveed A. Sattar, FRCP; Jamie P. Traynor, MD; Helen M. Colhoun, MD; for the Scottish Diabetes Research Network epidemiology group and the Scottish Renal Registry

JAMA. 2015;313(1):37-44. doi:10.1001/jama.2014.16425

Main outcome estimated loss of life expectancy of around 11 years for women and 13 years for men at age 20 years

Original Investigation

Association Between 7 Years of Intensive Treatment of Type 1 Diabetes and Long-term Mortality

Writing Group for the DCCT/EDIC Research Group

JAMA. 2015;313(1):45-53. doi:10.1001/jama.2014.16107

Lower all-cause mortality risk, intensive therapy group (HR = 0.67 [95%Cl, 0.46-0.99]; P = .045) after 27 years of follow up

Livingstone, 2014

Life expectancy for men at 20 yrs, additional 46.2 yrs; for women additional 48.1 yrs

Lower all-cause mortality risk, intensive therapy group (HR = 0.67) after 27 years of follow up

DCCT-EDIC, 2014

Generation of Functional Human Pancreatic β Cells In Vitro

Felicia W. Pagliuca,^{1,3} Jeffrey R. Millman,^{1,3} Mads Gürtler,^{1,3} Michael Segel,¹ Alana Van Dervort,¹ Jennifer Hyoje Ryu,¹ Quinn P. Peterson,¹ Dale Greiner,² and Douglas A. Melton^{1,*}

¹Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA

²Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, AS7-2051, Worcester, MA 01605, USA ³Co-first author

*Correspondence: dmelton@harvard.edu http://dx.doi.org/10.1016/j.cell.2014.09.040

> The generation of insulin-producing pancreatic β cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here, we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem-cell-derived β cells (SC- β) express markers found in mature β cells, flux Ca²⁺ in response to glucose, package insulin into secretory granules, and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice.

Cell 159, 428-439, October 9, 2014

Figure 1. SC-β Cells Generated In Vitro Secrete Insulin in Response to Multiple Sequential High-Glucose Challenges like Primary Human β Cells

Cell 159, 428-439, October 9, 2014

Prevention of Type 2 Diabetes in Subjects With Prediabetes and Metabolic Syndrome Treated With Phentermine and Topiramate Extended Release W. Timothy Garvey,¹ Donna H. Ryan,² Robert Henry,³ Nancy J.V. Bohannon,⁴ Hermann Toplak,⁵ Michael Schwiers,⁶ Barbara Troupin,⁷ and Wesley W. Day⁷

Diabetes Care 2014;37:912-921 | DOI: 10.2337/dc13-1518

Bariatric Surgery versus Intensive Medical Therapy for Diabetes — 3-Year Outcomes

Philip R. Schauer, M.D., Deepak L. Bhatt, M.D., M.P.H., John P. Kirwan, Ph.D., Kathy Wolski, M.P.H., Stacy A. Brethauer, M.D., Sankar D. Navaneethan, M.D., M.P.H., Ali Aminian, M.D., Claire E. Pothier, M.P.H., Esther S.H. Kim, M.D., M.P.H., Steven E. Nissen, M.D., and Sangeeta R. Kashyap, M.D., for the STAMPEDE Investigators*

N ENGL | MED 370;21 NEJM.ORG MAY 22, 2014

Original Investigation

Association of Bariatric Surgery With Long-term Remission of Type 2 Diabetes and With Microvascular and Macrovascular Complications

Lars Sjöström, MD, PhD; Markku Peltonen, PhD; Peter Jacobson, MD, PhD; Sofie Ahlin, MD, PhD; Johanna Andersson-Assarsson, PhD; Åsa Anveden, MD; Claude Bouchard, PhD; Björn Carlsson, MD, PhD; Kristjan Karason, MD, PhD; Hans Lönroth, MD, PhD; Ingmar Näslund, MD, PhD; Elisabeth Sjöström, MD; Magdalena Taube, PhD; Hans Wedel, PhD; Per-Arne Svensson, PhD; Kajsa Sjöholm, PhD; Lena M. S. Carlsson, MD, PhD Prevention of Type 2 Diabetes in Subjects With Prediabetes and Metabolic Syndrome Treated With Phentermine and Topiramate Extended Release W. Timothy Garvey,² Donna H. Ryan,² Robert Henry,³ Nancy J.V. Bohannon,⁴ Hermann Toplak,⁵ Michael Schwiers,⁶ Barbara Troupin,⁷ and Wesley W. Day⁷

Figure 1—Percent weight loss from baseline to week 108 in the cohort with prediabetes and/or MetS at baseline. Least squares mean percent weight loss in the ITT population of subjects with prediabetes and/or MetS. *P* < 0.0001 vs. placebo for all time points assessed. LS, least squares.

-2.5%

-10.9% -12.1%

Phentermine/Topiramate Extended release plus lifestyle modification

Diabetes Care 2014;37:912-921

STAMPEDE Trial

At 3 years, primary end point was met by 5% (med gp), v.s. 38% gastric-bypass group (P<0.001), 24% sleeve-gastrectomy group (P = 0.01)

N ENGL J MED 370;21 NEJM.ORG MAY 22, 2014

Original Investigation

Association of Bariatric Surgery With Long-term Remission of Type 2 Diabetes and With Microvascular and Macrovascular Complications

Lars Sjöström, MD, PhD; Markku Peltonen, PhD; Peter Jacobson, MD, PhD; Sofie Ahlin, MD, PhD; Johanna Andersson-Assarsson, PhD; Åsa Anveden, MD; Claude Bouchard, PhD; Björn Carlsson, MD, PhD; Kristjan Karason, MD, PhD; Hans Lönroth, MD, PhD; Ingmar Näslund, MD, PhD; Elisabeth Sjöström, MD; Magdalena Taube, PhD; Hans Wedel, PhD; Per-Arne Svensson, PhD; Kajsa Sjöholm, PhD; Lena M. S. Carlsson, MD, PhD

Diabetes remission rates:

72.3% v.s. 16.4% for bariatric surgery v.s. controls at 2 yrs (P < 0.001)

30.4% v.s. 6.5% for bariatric surgery v.s. controls and at 15 yrs (P < 0.001)

Banding, n= 61; vertical banding, n=227; bypass, n=55.

JAMA. 2014;311(22):2297-2304. doi:10.1001/jama.2014.5988

Bariatric surgery & diabetes complications

HR, 0.44; *P* < 0.001

HR, 0.68; P = 0.001

CONCLUSIONS AND RELEVANCE In this very long-term follow-up observational study of obese patients with type 2 diabetes, bariatric surgery was associated with more frequent diabetes remission and fewer complications than usual care. These findings require confirmation in randomized trials.

Crossmark

Effect of Exenatide, Sitagliptin, or Glimepiride on β-Cell Secretory Capacity in Early Type 2 Diabetes

Diabetes Care 2014;37:2451-2458 | DOI: 10.2337/dc14-0398

Glucose potentiated arginine test

Table 2—Measures of β -cell secretory capacity, β -cell sensitivity to glucose, insulin sensitivity, and glucagon secretion derived from the GPA test

	Exenatide $(n = 14)$		Sit	Sitagliptin (n = 12)		Glimepiride $(n = 14)$		= 14)	
	Baseline	6 months ^a	Δ	Baseline	6 months ^a	Δ	Baseline	6 months ^a	Δ
AIR _{arg} (µ.U/mL)	52 ± 14	52 ± 11	-0.2 ± 9	35 ± 4	34 ± 6	-2 ± 7	44 ± 6	42 ± 4	-2 ± 7
AIRpot (µU/mL)	138 ± 31	108 ± 21	$-30 \pm 20^{+}$	83 ± 12	80 ± 15	-2 ± 8	97 ± 16	119 ± 19	22 ± 12
AIR _{max} (µU/mL)	214 ± 60	188 ± 34	$-25 \pm 50 \ddagger$	149 ± 20	158 ± 30	9 ± 21	133 ± 19	$202 \pm 35^{*}$	69 ± 33
PG _{s0} (mg/dL)	175 ± 13	190 ± 14	25 ± 20	226 ± 12	209 ± 16	-5 ± 24	168 ± 17	182 ± 10	10 ± 26
$M (mg \cdot kg^{-1} \cdot min^{-1})$	5.5 ± 0.3	5.8 ± 0.4	0.27 ± 0.4	5.4 ± 0.4	5.3 ± 0.4	-0.1 ± 0.4	5.5 ± 0.4	5.8 ± 0.4	0.35 ± 0.4
I (μU/mL)	41 ± 13	39 ± 9	-2 ± 9	22 ± 2	23 ± 4	1 ± 3	28 ± 7	26 ± 2	-2 ± 5
M/I (mg \cdot kg ⁻¹ \cdot min ⁻¹ / μ U/mL)	0.3 ± 0.1	0.3 ± 0.1	-0.01 ± 0.0	0.3 ± 0.0	0.3 ± 0.1	0.04 ± 0.1	0.3 ± 0.1	0.3 ± 0.1	-0.04 ± 0.0
AGRarg (pg/mL)	60 ± 12	63 ± 8	3 ± 17	77 ± 13	60 ± 11	-17 ± 6	40 ± 9	62 ± 8	22 ± 17
AGRinh (pg/mL)	63 ± 12	58 ± 13	-3 ± 6	64 ± 13	55 ± 16	-10 ± 10	46 ± 7	59 ± 7	11 ± 7
AGRmin (pg/mL)	51 ± 12	52 ± 12	2 ± 5‡	55 ± 8	59 ± 19	4 ± 21	37 ± 6	59 ± 8*	21 ± 8

B-cell secretory capacity B-cell sensitivity to glucos

Data are means \pm SE. Δ , change from baseline to 6 months with each value. ^aFinal visits after 6 months of the rapy were conducted following a 5- to 7-day drug washout. **P* < 0.05 when comparing values within each group. †*P* < 0.05 when comparing Δ between the exenatide and glimepiride groups. ‡*P* ≤ 0.1 (statistical trend) when comparing Δ between exenatide and glimepiride groups.

CONCLUSIONS

After 6 months of treatment, exenatide or sitagliptin had no significant effect on functional β -cell mass as measured by β -cell secretory capacity, whereas glime-piride appeared to enhance β - and α -cell secretion.

Sulfonylurea in combination with insulin is associated with increased mortality compared with a combination of insulin and metformin in a retrospective Danish nationwide study

Ulrik M. Mogensen • Charlotte Andersson • Emil L. Fosbøl • Tina K. Schramm • Allan Vaag • Nikolai M. Scheller • Christian Torp-Pedersen • Gunnar Gislason • Lars Køber

Fig. 2 Use of SU+insulin compared with other dual therapies according to year. Red line, SU+insulin; blue line, metformin+insulin; dashed line, metformin+SU; dotted line, other dual therapy

1997-2009 11,081 SU + Insulin 16,910 Metformin + Insulin users Table 2 Crude incidence rates per 1,000 person-years for mortality, cardiovascular death and a composite endpoint of stroke, MI and cardiovascular

death

Variable	Insulin +							
	Glibenclamide	Gliclazide	Glimepiride	Glipizide	Tolbutamide	Metformin		
All-cause mortality								
Events	99	63	524	72	30	774		
Person-years	880	830	5,469	588	237	33,193		
Crude incidence rates	112 (92-137)	76 (59-97)	96 (87-104)	122 (97-154)	126(88-181)	23 (22-25)		
Cardiova scular death								
Events	36	19	188	20	9	325		
Person-years	880	830	5,469	588	237	33,193		
Crude incidence rates	40 (29-56)	23 (15-36)	34 (30-40)	33 (22-52)	38 (20-73)	9.8 (8.8-10.9)		
Composite endpoint								
Events	52	36	265	37	13	650		
Person-years	850	809	5,321	578	235	32,451		
Crude incidence rate	61 (47-80)	46 (32-62)	49 (44-56)	64 (46-88)	55 (32-95)	20 (18.6-21.6)		

Table 3 Crude incidence rates for hypoglycaemia

Variable	In sulin +							
	Glibenclamide	Gliolazide	Glimepiride	Glipizide	Tolbutamide	Metformin		
Hypoglycaemia								
Events	20	17	118	10	5	206		
Person-years	880	830	5,469	588	237	33,193		
Crude incidence rate per 1,000 person-years	23 (16-37)	20 (12-34)	21(18-26)	17 (9-31)	21 (9-51)	6 (5-7)		

Diabetologia (2015) 58:50-58

RRs and 95% Cls associated with the use of insulin in combination with SUs or metformin

0.6 0.8 1.2 1.6 2.2 3.0

RR

Linagliptin-Mediated DPP-4 Inhibition Ameliorates Kidney Fibrosis in Streptozotocin-Induced Diabetic Mice by Inhibiting Endothelial-to-Mesenchymal Transition in a Therapeutic Regimen

Diabetes 2014;63:2120-2131 | DOI: 10.2337/db13-1029

Keizo Kanasaki,¹ Sen Shi,¹ Megumi Kanasaki,¹ Jianhua He,¹ Takako Nagai,¹ Yuka Nakamura,² Yasuhito Ishigaki,² Munehiro Kitada,¹ Swayam Prakash Srivastava,¹ and Daisuke Koya¹

DPP4 inhibition/renal fibrosis

Figure 2—Inhibition of DPP-4 by linagliptin in diabetic kidneys is associated with the amelioration of kidney fibrosis. *A*–*C*: PAS staining for glomeruli. *D*–*F*: MTS staining in the indicated group of mice. Scale bar, 50 μ m. *G*–*I*: A morphometric analysis of the kidney histology was performed as described in the RESEARCH DESIGN AND METHODS. Control, *n* = 5; DM, *n* = 7; DM+linagliptin, *n* = 5 were analyzed. *J*: Urine albumin excretion was analyzed by albumin-creatinine ratios. Control, *n* = 5; DM, *n* = 8; DM+linagliptin, *n* = 6 were analyzed. *K*: Western blot analysis for TGF-β1, TGF-β2, and DPP-4. A representative blot from four independent experiments is shown. *L*–*N*: Densitometric analysis of indicated protein expression relative to actin levels is shown. *n* = 4 in each group were analyzed. *O*: qPCR analysis for DPP-4 in the kidney from six mice in each group. DPP-4 activity measurements in kidney (control, *n* = 3; DM, *n* = 6; DM+linagliptin, *n* = 6) (*P*) and plasma (all *n* = 6) (*Q*) were analyzed. The graphs in the figure are expressed as mean ± SEM. DM, diabetic mice.

The Influence of New European Union Driver's License Legislation on Reporting of Severe Hypoglycemia by Patients With Type 1 Diabetes

Ulrik Pedersen-Bjergaard,^{1,2} Louise Færch,¹ Marie-Louise Allingbjerg,¹ Rikke Agesen, 1,2 and Birger Thorsteinsson^{1,2}

Diabetes Care 2015;38:29-33 | DOI: 10.2337/dc14-1417

		Year	
	2010	2011	2012
Data coverage (%)	81.7	65.4	66.1
Severe hypoglycemia			
Mean rate per patient-year	0.36	0.47	0.19
Range	0-7	0-11	0-5
nsulin doses (IU/day)	51.2 (22.0)	49.8 (21.9)	49.5 (22.1)
Insulin regimen			
Analog basal-bolus	113 (36.6)	125 (40.5)	128 (41.4)
Human basal-bolus	48 (15.5)	46 (14.9)	41 (13.3)
Mixed basal-bolus	55 (17.8)	48 (15.5)	55 (17.8)
CSII	28 (9.1)	38 (12.3)	49 (15.9)
Other	65 (21.0)	52 (16.8)	36 (11.6)
HbA _{1c} (%)	8.0 (1.1)	7.8 (1.1)	7.7 (1.0)
HbA _{1c} (mmol/mol)	64 (12)	62 (12)	61 (11)

Table 2-Temporal development in rates of severe hypordycemia as indicated in

Data are presented as mean (SD) or n (%) unless otherwise indicated.

Figure 1—Mean annual rates of severe hypoglycemia obtained in an anonymous questionnaire survey and from medical records before and after the 1 January 2012 implementation of new EU legislation on driver's licensing in Denmark.

Figure 2—Proportion of patients with solitary and recurrent (two or more) episodes of severe hypoglycemia in an anonymous questionnaire (left columns) and as documented in the medical records in 2010, 2011, and 2012. SH, severe hypoglycemia.

Reported rates of severe hypoglycemia in the medical records were reduced by 55% in 2012 compared with the prior years (P = 0.034)

The proportion of subjects reporting recurrent episodes was grossly reduced from 5.6 to 1.5% (P = 0.014)

Compared with anonymous reporting in the questionnaire, the rate of severe hypoglycemia in 2012 was 70% lower (P < 0.001)

Glycemic Targets in the Second and Third Trimester of Pregnancy for Women With Type 1 Diabetes

Michael J.A. Maresh,¹ Valerie A. Holmes,² Christopher C. Patterson,² Ian S. Young,² Donald W.M. Pearson,³ James D. Walker,⁴ and David R. McCance,⁵ for the Diabetes and Pre-eclampsia Intervention Trial Study Group

Diabetes Care 2015;38:34-42 | DOI: 10.2337/dc14-1755

Table 1-Maternal characteristics and glycemic control in 72	5 participants
Age (years), mean (SD)	29.6 (5.6)
BMI (kg/m ²), mean (SD)*	27.4 (4.7)
Diabetes duration (years), mean (SD)	14.5 (8.2)
Primiparous, n (%)	361 (49.8)
Smoker, n (%)	139 (19.2)
Social class: head of household in professional or managerial/technical occupation, n (%) ⁺	297 (46.0)
Nonwhite ethnicity, n (%)	26 (3.6)
Education (years), mean (SD)	14.0 (2.8)
A1C [% (mmol/mol)], mean (SD)‡ First antenatal visit 26 weeks' gestation 34 weeks' gestation	7.8 (1.4)/62 (15) 6.7 (0.8)/50 (9) 6.6 (0.7)/48 (7)
Mean fasting/preprandial capillary glucose (mmol/L), mean (SD)§ 26 weeks' gestation 34 weeks' gestation	6.4 (1.8) 6.0 (1.7)
Mean 1-h postprandial capillary glucose (mmol/L), mean (SD) 26 weeks' gestation 34 weeks' gestation	7.5 (2.4) 7.2 (2.3)

*Based on n = 708 results. †Based on n = 646 results. ‡Based on n = 698/576/505 results at first antenatal visit/26 weeks' gestation/34 weeks' gestation. §Based on n = 610/546 results at 26 weeks' gestation/34 weeks' gestation. ||Based on n = 484/447 results at 26 weeks' gestation/34 weeks' gestation.

Glycemic Targets in the Second and Third Trimester of Pregnancy for Women With Type 1 Diabetes

Michael J.A. Maresh,¹ Valerie A. Holmes,² Christopher C. Patterson,² Ian S. Young,² Donald W.M. Pearson,³ James D. Walker,⁴ and David R. McCance,⁵ for the Diabetes and Pre-eclampsia Intervention Trial Study Group

Diabetes Care 2015;38:34-42 | DOI: 10.2337/dc14-1755

		A1C at 26 weeks						
	<6.0% (<42 mmol/mol) (<i>n</i> = 101)	6.0–6.4% (42–47 mmol/mol) (n = 176)	6.5–6.9% (48–52 mmol/mol) (n = 128)	7.0–7.4% (53–58 mmol/mol) (n = 98)	7.5+% (59+ mmol/mol) (n = 73)	P value for trend		
Pre-eclampsia								
No. (%)	8/101 (8)	23/176 (13)	29/128 (23)	24/98 (24)	17/73 (23)			
OR (95% CI)	1.0 (Reference)	1.7 (0.8-4.1)	3.4‡ (1.5-7.8)	3.8‡ (1.6-8.9)	3.5‡ (1.4-8.7)	< 0.001		
OR (95% CI)*	1.0 (Reference)	2.0 (0.8-4.9)	4.3‡ (1.7–10.8)	4.6‡ (1.8-12.0)	5.1‡ (1.9-14.1)	< 0.001		
LGA (>90th centile)								
No. (%)	36/99 (36)	88/175 (50)	73/128 (57)	60/98 (61)	46/73 (63)			
OR (95% CI)	1.0 (Reference)	1.8† (1.1-2.9)	2.3‡ (1.4-4.0)	2.8§ (1.6-4.9)	3.0§ (1.6-5.6)	< 0.001		
OR (95% CI)*	1.0 (Reference)	1.7+ (1.0-3.0)	2.5‡ (1.4-4.5)	3.2§ (1.7-6.1)	3.7§ (1.8-7.5)	< 0.001		
Cesarean section delivery								
No. (%)	67/101 (66)	125/176 (71)	85/128 (66)	76/98 (78)	46/73 (63)			
OR (95% CI)	1.0 (Reference)	1.2 (0.7-2.1)	1.0 (0.6-1.7)	1.8 (0.9-3.3)	0.9 (0.5-1.6)	0.90		
OR (95% CI)*	1.0 (Reference)	1.1 (0.6-2.0)	1.1 (0.6-2.0)	2.0 (1.0-3.9)	1.0 (0.5-1.9)	0.48		
Neonatal hypoglycemia requiring glucose infusion								
No. (%)	20/99 (20)	42/170 (25)	49/124 (40)	39/95 (41)	30/70 (43)			
OR (95% CI)	1.0 (Reference)	1.3 (0.7-2.4)	2.6‡ (1.4-4.7)	2.8‡ (1.5-5.2)	3.0‡ (1.5-5.9)	< 0.001		
OR (95% CI)*	1.0 (Reference)	1.5 (0.8-2.9)	2.9‡ (1.5-5.6)	3.5§ (1.7-7.2)	3.8§ (1.7-8.2)	< 0.001		
Hyperbilirubinemia requiring phototherapy								
No. (%)	13/99 (13)	25/173 (14)	26/127 (20)	28/96 (29)	20/71 (28)			
OR (95% CI)	1.0 (Reference)	1.1 (0.5–2.3)	1.7 (0.8–3.5)	2.7‡ (1.3–5.7)	2.6+ (1.2-5.7)	< 0.001		
OR (95% CI)*	1.0 (Reference)	1.4 (0.6–2.9)	2.1 (0.9-4.5)	3.7‡ (1.7–8.3)	3.8‡ (1.6-8.9)	< 0.001		
Delivery before 37 weeks								
No. (%)	21/101 (21)	51/176 (29)	48/128 (38)	50/98 (51)	33/73 (45)			
OR (95% CI)	1.0 (Reference)	1.6 (0.9-2.8)	2.3‡ (1.3-4.2)	4.0§ (2.1-7.4)	3.1§ (1.6-6.1)	< 0.001		
OR (95% CI)*	1.0 (Reference)	1.6 (0.8–2.9)	2.5‡ (1.3-4.8)	5.1§ (2.6-10.2)	3.8§ (1.8-8.0)	< 0.001		
Composite adverse neonatal outcome								
No. (%)	8/101 (8)	21/176 (12)	25/128 (20)	27/98 (28)	16/73 (22)			
OR (95% CI)	1.0 (Reference)	1.6 (0.7-3.7)	2.8+ (1.2-6.6)	4.4§ (1.9-10.3)	3.3+ (1.3-8.1)	< 0.001		
OR (95% CI)*	1.0 (Reference)	1.6 (0.7-4.1)	3.2‡ (1.3-8.0)	6.7§ (2.6–17.0)	4.4‡ (1.6–12.3)	< 0.001		

*Adjusted for age, BMI, years of education, social class, ethnicity, parity, current smoking, duration of diabetes, microalbuminuria before pregnancy, vitamin treatment group, and center. †*P* < 0.05, ‡*P* < 0.01, §*P* < 0.001.

Insulin pump use in pregnancy is associated with lower HbA_{1c} without increasing the rate of severe hypoglycaemia or diabetic ketoacidosis in women with type 1 diabetes

Melissa M. Kallas-Koeman • Jason M. Kong • Jennifer A. Klinke • Sonia Butalia • Abhay K. Lodha • Ken I. Lim • Qiuli M. Duan • Lois E. Donovan

Table 2 Maternal outcomes in pregnancies >20 weeks' gestation according to mode of insulin therapy						
Outcome	MDI (n=218)	Insulin pump (n=113)	p value ^a			
HbA _{1c} , % (mmol/mol), mean \pm SD (<i>n</i>)						
First trimester average	7.60±1.38 (60±15.1) (182)	6.90±0.71 (52±7.8) (97)	< 0.001			
Second trimester average	6.83±0.99 (51±10.8) (202)	6.34±0.56 (46±6.1) (105)	< 0.001			
Third trimester average	6.81±0.85 (51±9.3) (168)	6.49±0.52 (47±5.7) (83)	0.002			
Severe hypoglycaemia, $n(\%)$						
1+ event	18/237 (7.6)	9/113 (8.0)	0.90			
Total events	35	17	_			
Diabetic ketoacidosis, n (%)	7/237 (3.0)	2/112 (1.8)	0.72			
Hypertension in pregnancy, n (%)						
Gestational hypertension or pre-eclampsia	56/198 (28.3)	22/103 (21.4)	0.19			
Pre-eclampsia only	12/198 (6.1)	6/103 (5.8)	0.93			
Weight gain, kg, mean \pm SD (<i>n</i>)	15.2±6.2 (206)	16.3±8.7 (107)	0.18			
Delivery mode, n (%)						
Caesarean	140/218 (64.2)	78/113 (69.0)	0.38			
Vaginal	56/218 (25.7)	29/113 (25.7)	—			
Assisted vaginal	22/218 (10.1)	6/113 (5.3)	_			
Primary Caesarean birth, n (%)	152/213 (71.4)	81/112 (72.3)	0.86			

^a Student's *t* test for continuous variables and χ^2 tests of association for categorical variables

Glycaemic control

Table 3 Proportion of women achieving a mean HbA _{1c} $\leq 6.1\%$ and $\leq 7.0\%$ in each trimester	of pregnancy according to mode of insulin therapy
--	---

Trimester	$HbA_{1c} \le 6.1\%$ (43)	mmol/mol)		HbA _{1c} ≤7.0% (53 mmol/mol)		
	MDI	Insulin pump	<i>p</i> value ^a	MDI	Insulin pump	p value ^a
First, <i>n</i> (%)	17/206 (8.3)	11/109 (10.1)	0.59	79/206 (38.4)	68/109 (62.4)	< 0.001
Second, n (%)	44/207 (21.3)	43/111 (38.7)	< 0.001	143/207 (69.1)	100/111 (90.1)	< 0.001
Third, <i>n</i> (%)	28/168 (16.7)	22/86 (25.6)	0.09	113/168 (67.3)	73/86 (84.9)	0.003

 $a^{a}\chi^{2}$ tests of association

ORIGINAL ARTICLE

Outpatient Glycemic Control with a Bionic Pancreas in Type 1 Diabetes

Steven J. Russell, M.D., Ph.D., Firas H. El-Khatib, Ph.D., Manasi Sinha, M.D., M.P.H., Kendra L. Magyar, M.S.N., N.P., Katherine McKeon, M.Eng., Laura G. Goergen, B.S.N., R.N., Courtney Balliro, B.S.N, R.N., Mallory A. Hillard, B.S., David M. Nathan, M.D., and Edward R. Damiano, Ph.D.

Summary & Conclusions

- Trends in epidemiology and intervention trials
- Examined the role of stem cells, new therapies and surgical strategies for diabetes cure/prevention
- Reviewed treatment efficacy and risks of current oral agents
- Potential impact of new agents and renal complications
- Challenges in supporting patients with driving legislation
- New studies on glycaemic targets and treatment for diabetes in pregnancy
- Technological innovations with bionic pancreas