

Assuming glycaemic control and the impact of anaemia in DM CKD Garry John Norfolk and Norwich University Hospital & The Norwich Medical School, UEA

Norfolk and Norwich University Hospitals

NHS Foundation Trust

History of Diabetes Investigations

A DOCTOR OF MEDICINE MAGDALEN COLLEGE, 1508

1679: Willis Urine of diabetics had a sweet taste Associated with: "good fellowship and guzzling down of ... wine." 1776: Dobson Isolated a "dry residue" from urine of diabetics which looked and tasted

like "brown sugar"

Michelangelo's *David* created between 1501 and 1504

Michelangelo's David 2014

Easily available, cheap, energy dense foods!

12 rashers of bacon 12 sausages Six eggs Four black pudding slices Four slices of bread and butter Four slices of toast Four slices of fried bread Two hash browns Eight-egg cheese and potato omelette Saute potatoes **Mushrooms** Beans Tomatoes

Cost: £15 (\$19) Free if eaten within an hour!

An abnormal haemoglobin in red cells of diabetics

Rahbar S Clin Chim Acta 1968; 22: 296-298

An abnormal hemoglobin in red cells of diabetics

In a survey carried out on 1200 patients from Tehran University Hospitals, in addition to three rare hemoglobins which are under investigation both in our department here and at the University of Cambridge, two patients also showed an abnormal fast moving hemoglobin fraction : both were suffering from diabetes mellitus. Studies were started to investigate the occurrence of this abnormal fraction in other diabetics, and in 47 cases examined in the last three months, including 11 children with severe diabetes mellitus, the additional fraction was detected. Routine hematological examination according to standard methods² gave normal results in the majority of cases.

Electrophoresis of hemoglobin was carried out on cellulose acetate according to Graham and Gruenbaum³; the abnormal fraction does not separate well by this method, but there is a broadening of the Hb A band. In starch gel electrophoresis with tris-EDTA-borate buffer pH 8.1 (ref. 1) the additional fraction moves a little faster than Hb A and slower than Hb J (Iran)⁸ (Fig. 1).

Agar gel electrophoresis in citrate buffer pH 6.2 by the method of Robinson *et al.*⁴ is the method of choice for the separation and demonstration of this fraction which moves in front of Hb A to the cathode in the same position as Hb F (Fig. 2).

Fig. 1. Starch gel electrophoresis in tris-EDTA-borate buffer, pH 8.1. o-Dianizidine stain, ref. 7. a: normal; b: Hb A + Hb x; c: Hb A+Hb J (Iran).

Clin. Chim. Acta, 22 (1968) 296-298

12

HbA_{1c} – N terminal glycation

The use of Haemoglobin A_{1c} in Clinical Practice

These are <u>single</u> molecular structures of known composition; their concentration in the body is tightly regulated and <u>concentrations controlled</u>.

The use of Haemoglobin A_{1c} in Clinical Practice

HbA_{1c} is:

A product of a <u>non-enzymatic</u> Glycation reaction; the reaction follows the <u>Law of</u> <u>Mass action</u>. The reaction is not controlled and the Glycated Haemoglobin formed is <u>not</u> <u>a single molecular structure</u>.

A Non-enymatic reaction following the Law of Mass Action.

GLUCOSE \neq HbA_{1c}

Diagnosis with GLUCOSE \neq Diagnosis with HbA_{1c}

What Period is Measured?

DCCT: HbA_{1c} and risk of microvascular complications

Skyler. Endocrinol Metab Clin 1996;25:243-254

Why is HbA_{1c} so Important?

Stratton IM, et al. BMJ 2000; 321:405–412.

Why is HbA_{1c} so Important?

Stratton IM, et al. BMJ 2000; 321:405–412.

Assumptions for use of HbA_{1c} as a monitor of glycaemia:

Micro-environment is constant

• Within an individual this is probably true.

Hence: Glucose is the ONLY variable.

Consider: The HbA_{1c} result is for the **INDIVIDUAL patient**

Red cell life span heterogeneity in haematologically normal people is sufficient to alter HbA_{1c}

and Laboratory Medicine

Cohen et al. Blood 2008;112:4284-4291

Biological Variation of HbA_{1c}

Biological Variability HbA_{1c}

Acceptability of Data (ADAG)

Diabetes Care 2008;31:1–6

Predicting mean glucose using CGMS

HbA_{1c} (%)	eAG	95% Predictive Limits	
	(mmol/L)	(mmol/L)	
5	5.4	4.2 to 6.7	
6	7.0	5.5 to 8.5	
7	8.6	→ 6.8 to 10.3	
8	10.1	8.1 to 12.1	
9	11.7	9.4 to 13.9	
10	13.3	10.7 to 15.7	
11	14.9	12.0 to 17.5	
12	16.5	13.3 to 19.3	

Diabetes Care 2008;31:1–6

University of East Anglia

HbA_{1c} and anaemia

Why? We know that anaemia can give rise to an elevated HbA_{1c}; but is this true in all cases?

50 patients (30 women, 20 men, mean age 35.7 \pm 11.9 years) with IDA and 50 controls HbA_{1c} in healthy group 5.9% \pm 0.5% HbA_{1c} in IDA 7.4% \pm 0.8% (p<0.001) Following 3 months iron HbA_{1c} 6.2% \pm 0.6% 3.3million US females estimated to have IDA

Acta Haematol 2004;112:126-128

JAMA 1997;277:973-6

The Effect of Iron and Erythropoietin Treatment on the A1C of Patients With Diabetes and Chronic Kidney Disease

JEN M. NG, MRCP¹ MICHELLE COOKE, BSC² SUNII. BHANDARI, PHD, FRCP^{2,3} STEPHEN L. ATKIN, PHD, FRCP¹ ERIC S. KILPATRICK, MD, FRCPATH⁴

Diabetes Care 2010; 33: 11

Effect of Intravenous Iron Therapy

Table 1—Patients on iron therapy					
	Before iron mean (95% CI)	After iron mean (95% CI)	P*		
A1C (%)	7.40 (6.60-8.19)	6.96 (6.27-7.25)	< 0.001		
Hb (g/dl)	9.71 (9.32-10.05)	10.46 (9.97-10.75)	0.001		
Hct	0.302 (0.285-0.316)	0.334 (0.314-0.354)	0.007		
Ferritin (µg/l)	122 (67-176)	307 (211-403)	< 0.001		
MBG (mmol/l)	9.55 (8.20-10.90)	9.71 (8.29-11.13)	0.071		
Estimated glomerular filtration rate	34.0 (31.9-36.2)	32.8 (30.4-35.2)	0.137		

*Paired t test.

Conclusion:

Despite a lack of change of glycaemic control HbA_{1c} concentrations fell significantly (P < 0.001). There was no linear relationship between the change in HbA_{1c} and haemoglobin concentration values.

Mean Blood Glucose did not change

Effect of Erythropoietin-stimulating Agents

	Before ESA mean (95% CI)	After ESA mean (95% CI)	P*
A1C (%)	7.31 (6.42-8.54)	6.63 (6.03-7.36)	0.013
Hb (g/dl)	9.52 (9.18-9.86)	11.51 (11.15-11.85)	< 0.001
Hct	0.324 (0.296-0.350)	0.378 (0.341-0.398)	< 0.001
Ferritin (µg/l)	344 (241-447)	332 (211-354)	0.37
MBG (mmol/l)	8.72 (7.31-10.12)	8.78 (7.47-9.99)	0.893
Estimated glomerular filtration rate	30.5 (28.6-33.4)	31.0 (27.3-33.8)	0.613

Table 2-Patients on ESA

*Paired t test.

Conclusion:

Despite a lack of change of glycaemic control HbA_{1c} concentrations fell significantly (P 0.013), respectively, for groups A and B).

There appeared to be a nonsignificant trend toward ESA leading to a further decrease in HbA_{1c} following the initial fall due to iron.

In contrast, the group of patients receiving ESA therapy without iron had a significant fall in HbA1c from 7.3 to 6.5% (P = 0.02).

Mean Blood Glucose did not change

The Effect of Iron and Erythropoietin Treatment on the A1C of Patients With Diabetes and Chronic Kidney Disease

JEN M. NG, MRCP¹ MICHELLE COOKE, BSC² SUNIL BHANDARI, PHD, FRCP^{2,3}

STEPHEN L. ATKIN, PHD, FRCP¹ ERIC S. KILPATRICK, MD, FRCPATH⁴

Diabetes Care 2010; 33: 11

Conclusions:

 HbA_{1c} can be unreliable and can fall following treatment with both iron and ESA therapy.

Alternative methods for measuring glycaemic control such as capillary glucose testing and CGM should be used, and therapy should not be based on the HbA_{1c} value alone.

Glycated albumin has been suggested as an alternative marker to represent glycaemic control in patients with iron deficiency but, before this measurement is widely used further studies are required to better understand the correlation between glycated albumin and glycaemic control.

What affect does an aemia have on HbA_{1c} ?

43

Diabetologia (2015) 58:1409–1421 DOI 10.1007/s00125-015-3599-3

SYSTEMATIC REVIEW

The effect of anaemia and abnormalities of erythrocyte indices on HbA_{1c} analysis: a systematic review

Emma English¹ • Iskandar Idris¹ • Georgina Smith¹ • Ketan Dhatariya² • Eric S. Kilpatrick³ • W. Garry John⁴

DOI: 10.1007/s00125-015-3599-3 Pubmed ID: 25994072

HbA_{1c} and anaemia

IDA and ID clearly have an effect but studies are small and in limited ethnic groups commonly resulting in increased HbA_{1c} values

No clear cut point at which 'anaemia' becomes a problem.

Non-IDA show either no change in HbA_{1c} or decreased values in HbA_{1c} so knowing Hb levels alone will be insufficient to judge whether HbA_{1c} likely to be affected.

How to apply this information to everyday clinical practice

1. During monitoring of people with diabetes, when glucose and HbA_{1c} are discordant, consider abnormalities of erythrocyte indices.

2. When HbA_{1c} is normal/elevated but Hb is low, do not assume that HbA_{1c} is falsely elevated

 check erythrocyte indices, in particular MCV and MCH; if low, consider iron deficiency by TSAT or ferritin. If MCV and MCH are not low then consider other forms of anaemia—HbA_{1c} may be falsely decreased in these cases.

How to apply this information to everyday clinical practice

3. Iron deficiency, as well as IDA, may be sufficient to cause a change in HbA_{1c} values; this is highly relevant in women of childbearing age.

4. If abnormalities are identified, consider correction of the abnormality before using HbA_{1c} for diagnosis or monitoring.

5. It may take up to 6 months after treatment is initiated to normalise erythrocyte indices.

6. RDW may provide an additional indicator of normalisation of the erythrocyte population and erythrocyte lifespan.

HbA_{1c} in renal disease (systematic review)

- Does CKD affect HbA_{1c} values when compared to glucose markers?
 - No direct studies addressing whether or not CKD has an impact on HbA_{1c} analysis
 - Carbamlyated Hb no longer a major issue
 - -Can HbA_{1c} be used in renal disease?

So what do we know?

- HbA_{1c} was reported to be positively associated with eGFR in both diabetics and non-diabetics at various stages of CKD, but particularly in early CKD
- May be attributable to glomerular hyperfiltration

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

HbA_{1c} and glomerular hyperfiltration

- An elevated baseline HbA_{1c}, results in a greater annual decline in eGFR, particularly in people with a baseline eGFR above 60 ml/min/1.73 m².
- Individuals in later stages of CKD, particularly stage 3-4, show eGFR to be negatively affected by preceding HbA_{1c}, suggesting that poor glycemic control occurred prior to the decline in eGFR in those with later stages of CKD, and that good glycemic control at these stages may be critical in delaying the progression to end-stage renal disease (ESRD)

Determination of optimal HbA_{1c} targets in patients with type 2 diabetes.

Your tests reveal that you are retaining fluids!

Renal Disease if not HbA_{1c} then what?

Fructosamine:

- Mixture of proteins
- No standardisation
- Affected by several interferences
- No evidence base

Glycated Albumin:

- Single protein with known half life
- ? Effect of Renal disease on clearance
- No evidence base

Glucose and CGM:

- Measures the substance required
- Currently the only reliable measurement

Thank You

