Anti-diabetic therapy in patients with type 2 diabetes & chronic renal impairment

T Min^{1, 2}, GI Davies³, S Rice², J Chess⁴, J W Stephens^{1,2}

¹Department of Diabetes and Endocrinology, Morriston Hospital, Swansea, SA6 6NL; ²Diabetes Research Group, School of Medicine, Swansea University, Swansea, SA2 8PP, UK; ³Data Science, Swansea University, Swansea, SA2 8PP; ⁴ Renal Unit, Morriston Hospital, Swansea, SA6 6NL.

INTRODUCTION

 Choices of glucose lowering medication are limited for people with type 2 diabetes (T2DM) and chronic kidney disease.

AIM

- To investigate choices of anti-diabetic therapy in T2DM with chronic renal impairment.
- To examine glycaemic control and cardiovascular risk factors in relation to CKD stages.
- To examine the use of aspirin, statins, angiotensin converting enzyme inhibitors (ACEI)/

METHODS

- Adults T2DM who were on any glucose lowering therapy, between January and December 2014 in our health board were identified from Secure Anonymised Information Linkage database.
- No/Mild CKD was defined as eGFR ≥60 mL/min per 1.73 m², Moderate CKD as eGFR <60 mL/min per 1.73 m² and Severe CKD as eGFR ≤15-29 mL/min per 1.73 m² or dialysis.
- Demographic data; anti-diabetic medication, aspirin, statin and ACEI/ARB usage; blood pressure, HbA1c and lipid profile were collected.
- Independent sample t-test was used for continuous data and Chi square analysis for categorical data

data.

RESULTS

Figure 1. Flow chart describing number of patients

Table 1. Demographic, glycaemic control, blood pressure and lipid profile of patients grouped by three CKD stages

P² No/Mild Moderate \mathbf{P}^1 **P**³ Severe

Figure 2. Anti-diabetic medication usage among three CKD groups

Figure 3. Distribution of DDP-4 inhibitor usage

Table 2. Distribution of DDP-4 inhibitor usage indifferent eGFR cut-offs

DDP-4 inhibitor | eGFR >50 | eGFR 30-50 | eGFR <30

	n=8363	n=1137	n=85			
Sex (M; %)	4931 (59)	494 (43)	47 (55)			
Age (years)	63.7 ±12.7	$75.0\pm\!\!10.6$	$69.0\pm\!\!14.9$	<0.001	<0.001	<0.001
Duration of T2DM (years)	10.6 ±7.0	13.9 ±7.9	14.9 ±7.9	<0.001	<0.001	0.244
IHD (%)	1636 (19.6)	378 (33.2)	31 (36.5)	<0.001	<0.001	NS
RRT (%)	0	0	39 (45.9)			
Nephrologist (%)	136 (1.6)	134 (11.8)	48 (56.6)			
Endocrinologist (%)	1719 (20.6)	284 (25)	43 (50.6)			
HbA1c (mmol/mol)	$61.9\pm\!\!16.9$	$60.4\pm\!\!16.0$	$60.8\pm\!\!13.6$	0.009	0.602	0.858
SBP (mmHg)	134 ±13	$135\pm\!\!14$	135 ±12	0.036	0.415	0.88
DPB (mmHg)	75 ±8	72 ±8	73 ±7	<0.001	0.009	0.578
Weight (kg)	88.8 ± 21.4	82.9 ±20.0	$84.2\pm\!\!20.9$	<0.001	0.085	0.602
BMI (kg/m2)	32.0 ±6.6	31.1±6.6	31.0 ±6.7	<0.001	0.243	0.897
TC (mmol/L)	4.2 ±1.0	4.0 ±1.0	4.4 ±1.3	<0.001	0.236	0.012
LDL (mmol/L)	2.1 ±0.8	1.9 ±0.8	2.2 ±1.0	<0.001	0.613	0.114
HDL (mmol/L)	1.2 ±0.4	1.3 ±0.4	1.2 ±0.4	0.288	0.125	0.095

Sitagliptin (n=228)		
100mg	108	64	4
50mg	24	21	1
25mg	0	3	3
Saxagliptin (n=47)			
5mg	18	1	L 6
2.5mg	3	1	LO

Figure 4. Aspirin, Statin, ACEI/ARB usage among three CKD groups

$10 (111101/L) 1.9 \pm 1.5 1.9 \pm 1.0 2.0 \pm 2.0 0.258 < 0.001 < 0.001$

P¹: P value comparing No/Mild vs Moderate; P²: P value comparing No/Mild vs Severe; P³: P value comparing Moderate vs Severe; IHD: ischemic heart disease; RRT: renal replacement therapy; SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index; TC: total cholesterol; LDL: low density lipoprotein; HDL: high density lipoprotein; TG: triglyceride

SUMMARY

- The longest duration of T2DM and the highest prevalence of IHD were seen in the Severe CKD group comparing to those with the No/Mild and Moderate groups.
- The HbA1c in all the groups was higher than the NICE recommended target (58 mmol/mol).
- Higher prevalence of insulin usage and lower prevalence of metformin usage were observed in the Severe CKD group.
- Metformin was prescribed in approximately 20% of the Severe CKD group.
- Dose adjustment of DDP-4 inhibitor was done in about 70% of patients receiving DDP-4 inhibitor.
- The Severe CKD group had the highest prevalence of aspirin usage but the lowest prevalence of ACEI/ARB usage among three groups.
- Statin usage was comparable among three groups.

Correspondence: Dr Thinzar Min, Clinical Research Fellow, Morriston Hospital, Swansea; Email: thinzar.min@gmail.com