Empagliflozin Reduced the Total Burden of Events Leading to or Prolonging Hospitalisation in **EMPA-REG OUTCOME**

Gary Solomons,¹ Silvio E. Inzucchi,² Christoph Wanner,³ David Fitchett,⁴ Bernard Zinman,⁵ Stefan D. Anker,⁶ Michaela Mattheus,⁷ Ola Vedin,⁸ Stefan Hantel,⁹ Søren S. Lund¹⁰

¹Boehringer Ingelheim Ltd, Bracknell, UK; ²Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA; ³Würzburg University Clinic, Würzburg, Germany; ⁴St. Michael's Hospital, Division of Cardiology, University of Toronto, ON, Canada; ⁵Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, ON, Canada; ⁶Charité University, Berlin, Germany; ⁷Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany; ⁸Boehringer Ingelheim AB, Stockholm, Sweden; ⁹Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; ¹⁰Boehringer Ingelheim International GmbH, Ingelheim, Germany

Empagliflozin reduces total burden of all-cause mortality and events leading to or prolonging hospitalisation in patients with type 2 diabetes and established cardiovascular disease

What was known

- There were 2666 patients with at least 1 event leading to ACH-P. The event rate ratio (95% confidence interval [CI]) of empagliflozin versus placebo for first events was 0.88 (0.81, 0.95), p=0.0018 corresponding to a relative risk reduction of 12%.
- There were 5256 total (first plus recurrent) events leading to ACH-P.
- The event rate ratio (95% CI) for empagliflozin versus placebo for total ACH-P events was 0.78 (0.70, 0.87) (Figure 1)
- Empagliflozin reduced the relative risk of total events of ACH-P by 22% compared with placebo (Figure 2A).
- There were 2844 patients with at least 1 event for the composite of ACH-P + ACM. The event rate ratio (95% CI) of empagliflozin versus placebo for first events was 0.86 (0.80, 0.93), p=0.0001 corresponding to a relative risk reduction of 14%.
- There were 5617 total (first plus recurrent) events leading to the composite of ACH-P + ACM.
- The event rate ratio (95% CI) for empagliflozin versus placebo for total composite of ACH-P + ACM events was 0.76 (0.69, 0.85) (**Figure 1**)
- Empagliflozin reduced the risk of total events of ACH-P + ACM by 24% compared with placebo (Figure 2B).
- The number of ACH-P events prevented with empagliflozin versus placebo was 55.9 per 1000 patient years. The NNT (95% CI) over 3 years to prevent 1 such event was 6.0 (4.1, 11.1).
- In the EMPA-REG OUTCOME trial, the sodium-glucose co-transporter-2 (SGLT2) inhibitor empagliflozin reduced the risk of total (first plus recurrent) events leading to all-cause hospitalisation (ACH) by 17%, and the composite of all-cause mortality (ACM) and ACH by 19% versus placebo in patients with type 2 diabetes (T2D) and established cardiovascular disease (eCVD).¹
- A numerically greater empagliflozin treatment effect was observed with recurrent versus first-event analyses.²

What's new

Empagliflozin showed a sizeable reduction in the total burden of ACM and events leading to or prolonging hospitalisation for any cause in patients with T2D and eCVD, with a clinically relevant number of events prevented and a low number needed to treat (NNT).

OBJECTIVE

• We assessed the effect of empagliflozin on the total burden of events leading to or prolonging hospitalisation for any cause (ACH-P; as determined by the investigator), as well as the composite of ACH-P + ACM.

• The number of ACH-P + ACM events prevented with empagliflozin versus placebo was 67.7 per 1000 patient years. The NNT (95% CI) over the 3 years to prevent 1 such event was 4.9 (3.5, 8.4).

ing age as linear covariate and treatment, sex, baseline BMI category, baseline HbA1c category, baseline eGFR category, geographical region as fixed effec

The cumulative mean function shows the population cumulative mean number of events up to time

ACH-P. events leadina to or prolonaina hospitalisation for any cause; ACM, all-cause mortality; BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate;

• Time-to-event analyses of the ACH-P + ACM composite by order of event (1 to ≥6 events) yielded a numerically larger risk reduction with empagliflozin versus placebo with higher order of events, although the test for consistency was not significant (Figure 3).

Figure 3. Time-to-event analyses of the composite of events leading to or prolonging hospitalisation for any cause and all-cause mortality by order of event according to the Wei-Lin-Weissfeld model in pooled empagliflozin versus placebo participants

Pooled empagliflozin	Placebo		
(N=4687)	(N=2333)	Adjusted* hazard ratio,	n-value*
Patients, n (%)		empagliflozin versus placebo (95% Cl)	p-value

METHODS

- This post hoc analysis included participants from the EMPA-REG OUTCOME trial (ClinicalTrials.gov identifier: NCT01131676)¹ with estimated glomerular filtration rate (eGFR) \geq 30 ml/min/1.73 m² and glycated haemoglobin (HbA1c) 7.0–9.0% for drug-naïve participants and 7.0–10.0% for those on stable glucose-lowering therapy.
- Participants were randomised to empagliflozin 10 mg, 25 mg, or placebo, in addition to usual care. Empagliflozin dose groups were pooled for comparison versus placebo.
- The rates of total (first plus recurrent) events of ACH-P and the composite of ACH-P + ACM were analysed using a negative binomial regression model that preserves randomisation and accounts for correlation of multiple events within individuals.
- First events of ACH-P, ACM, and the composite of ACH-P + ACM were analysed using a Poisson regression model.
- Both models included age as linear covariate and treatment, sex, baseline body mass index (BMI) category, baseline HbA1c category, baseline eGFR category, and geographical region as fixed effect(s); log(time to first event) and log(observation time) were used as the offset for the Poisson and negative binomial regression models, respectively.
- Total events of the composite ACH-P + ACM were assessed in a time-to-event analysis using the Wei-Lin-Weissfeld model, which produces estimated relative treatment effects (hazard ratio) for the individual first and recurrent events by the order in which they occur. This model also includes a test of the consistency of the treatment effect estimates across the individual order of sequential events.
- We estimated the number of total (first plus recurrent) events prevented during the trial and the NNT to prevent 1 (first or recurrent) event with empagliflozin versus placebo over 3 years.

RESULTS

Figure 1. The adjusted event rate ratio of total (first plus recurrent) events leading to or prolonging hospitalisation for any cause and the composite with all-cause mortality in pooled empagliflozin versus placebo participants

	Pooled empagliflozin (N=4687)	Placebo (N=2333)	Pooled empagliflozin (N=4687)	Placebo (N=2333)			
	Events, n		Adjusted event rate per 1000 patient years*		Adjusted event rate ratio (95% CI)*		<i>p</i> -value*
ACH-P + ACM composite*	3513	2104	387.6	508.2	0.76 (0.69, 0.85)		<0.0001
ACH-P*	3302	1954	350.0	448.7	0.78 (0.70, 0.87)		<0.0001

ACH-P + ACM composite

≥1 event	1836 (39.2)	1008 (43.2)	0.87 (0.80, 0.93)		⊷● •	0.0002
≥2 events	816 (17.4)	460 (19.7)	0.86 (0.77, 0.97)		- -	0.0113
≥3 events	405 (8.6)	246 (10.5)	0.80 (0.68, 0.94)		———	0.0054
≥4 events	196 (4.2)	144 (6.2)	0.67 (0.54, 0.83)		• • •••	0.0002
≥5 events	113 (2.4)	84 (3.6)	0.67 (0.50, 0.88)		·•	0.0049
≥6 events	60 (1.3)	56 (2.4)	0.53 (0.37, 0.77)		·•	0.0008
Test for consistency	/†: <i>p</i> =0.1518			0.25	0.5 1	2
					Favours empagliflozin Eavo	ours placebo
					Favours empagliflozin Favo	ours placebo

atio for time to event using a Wei-Lin-Weissfeld model with factors for treatment, age, sex, baseline BMI, baseline HbA1c, baseline estimated glomerular filtration rate, and geographical region vided as a p-value) is the test for equality of ratios of empagliflozin versus placebo over the event count across all orders of events

A maximum of 10 events per participant were included in the model as <14 participants had higher numbers of events. Data not shown in figure: >7 events: HR 0.54 (95% CI 0.3-≥9 events: 0.37 (0.17, 0.82), p=0.0138 and ≥10 events: 0.41 (0.16, 1.06), p=0.0644.

ACH-P, events leading to or prolonging hospitalisation for any cause; ACM, all-cause mortality; BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; HbA1c, glycated haemoglobin.

• A summary of the reasons for events leading to or prolonging hospitalisation by system organ class is shown in Figure 4.

*Negative binomial model including age as a linear covariate and treatment, sex, baseline BMI category, baseline HbA1c category, baseline eGFR category and geographical region as fixed effects; log(observation time)

ACH, all-cause hospitalisation; ACH-P, events leading to or prolonging hospitalisation for any cause; ACM, all-cause mortality; BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; HbA1c, glycated haemoglobin.

*In either pooled empagliflozin or placebo participants. System organ class refers to MedDRA version 18.0. Numbers shown are percentages of participants with events based on all participants treated. Categories are not mutually exclusive as 1 hospitalisation could be counted in different categories if investigators provided more than 1 reason for a hospitalisation. MeDRA, Medical Dictionary for Regulatory Activities.

Disclosures

< 0.0001

GS is an employee of Boehringer Ingelheim (BI). SEI has served as a consultant, speaker, or member of clinical trial steering committees for BI, AstraZeneca (AZ), Novo Nordisk (NN), Sanofi/Lexicon Pharmaceuticals, Merck, vTv Therapeutics and Abbott/Alere. CW has received financial support from BI, Eli Lilly and Company (EL), and Janssen. DHF has received financial support from Amgen, AZ, BI, EL, Merck & Co., and Sanofi. BZ has received financial support from AZ, BI, EL, Janssen, Merck, NN, and Sanofi. SDA has received financial support from AZ and BI. MM, OV, SH, and SSL are employees of BI. SSL owns shares in NN and shares in dynamically traded investment funds, which may own stocks from pharmaceutical companies.

Acknowledgements

The EMPA-REG OUTCOME® trial, registered as NCT01131676 was funded by the Boehringer Ingelheim & Eli Lilly and Company Diabetes Alliance. Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Nikita Vekaria and Jonathon Gibbs of Elevate Scientific Solutions during the preparation of this poster. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development, and have approved the final version.

Poster 96: Association of British Clinical Diabetologists (ABCD) 2021; 14 October 2021 (Previously presented at the American Diabetes Association [ADA] 81st Scientific Sessions, Virtual, June 25–29, 2021) Presenter: Dr. Gary Solomons, Boehringer Ingelheim Ltd, Bracknell, UK; email: gary.solomons@boehringer-ingelheim.com

References

1. Inzucchi SE, et al. Diabetes 2020;69(Supplement 1):131-LB. 2. McGuire DK, et al. Lancet Diabetes Endocrinol 2020;8:949–959.