The interaction of endoscopic proximal intestinal exclusion therapy using Endobarrier with GLP-1 therapy

rapidly improves type 2 diabetes by increasing fasting and postprandial satiety

P Sen Gupta^{1,2}, RS Drummond³, BM McGowan⁴, B Hayee², T Dew², RP Vincent², CW le Roux², JJ Holst⁵, SA Amiel², REJ Ryder¹

¹City Hospital, Birmingham; ²King's College Hospital, London; ³Glasgow Royal Infirmary, ⁴Guy's & St Thomas' Hospital, London, UK; ⁵University of Copenhagen, Denmark.

BACKGROUND

Endoscopically-delivered proximal intestinal exclusion therapy using Endobarrier (Fig. 1), a 60cm polyethylene tubing device, is effective at weight and glycaemic lowering in type 2 diabetes, particularly in combination with GLP-1 receptor agonist therapy. The mechanisms in achieving this remain unclear.

METHOD

A subset of 70 adults with type 2 diabetes mellitus (HbA1c≥58mmol/mol) and obesity (BMI≥35kg/m²) despite GLP1-RA (liraglutide) therapy randomised to one of:

- Endobarrier + liraglutide 1.2mg
- Endobarrier (and stop liraglutide)
- Liraglutide 1.8mg (and no endobarrier)

Fig. 1A. Photograph of Endobarrier with crown anchor in foreground and tubing posteriorly; 1B shows the device implanted with endoscope (black) being used to guide capsule (white) containing Endobarrier. Once sited in the duodenum instruments are used to deploy the Endobarrier.

AIM

To evaluate the acute effect of proximal intestinal exclusion with and without GLP-1RA therapy, on hunger, satiety and associated peptides. underwent meal tests (400kcal, carbohydrate 31.1g, fat 26.7g, and protein 7.4g, using vanilla flavour Häagen-Dazs[®] ice cream) at baseline, 1 week and 1 year post-intervention (REVISE-Diabesity, ISRCTN00151053).

Simultaneous visual analogue scores (VAS, 10cm linear scale) for hunger and satiety were recorded and blood sampled at regular intervals post-ingestion as indicated in Fig. 2.

Fig. 2. protocol for hunger, satiety VAS completion and blood sampling.

RESULTS

Fig. 3A-B. Impact of treatment on hunger and satiety scores. A shows hunger scores and B satiety scores over time (minutes). The left panel shows baseline, middle panel is 1 week and right panel is 1 year after intervention.

There were 44 participants (age 50.2±10.7 years, 45.5% male, 63.6% Caucasian, type 2 diabetes duration 12.4±7.7 years, BMI 40.8±4.7kg/m², HbA1c 78.5±15.4mmol/mol). Fasting satiety rose from 31.4±18.0 to 50.8±27.3 at 1 week in the E+L group (P=0.017, n=17) but did not significantly change in the other groups. E+L also increased post-prandial satiety at 1 week (total AUC 476.2±201.9 at baseline, to 736.2±248.8 (P=0.001), sustained at 1 year to 606.3±231.1 (P=0.03, n=11).There were no corresponding changes in hunger or total GLP-1 responses.

CONCLUSION

- Increased satiety, without changes in hunger, contributes to improved glycaemic control when proximal intestinal exclusion is combined with GLP-1RA therapy.
- This increased satiety is sustained up to 1 year.
- The key mediator for this is not GLP-1 and alternatives are sought with planned analyses including PYY and GIP.

