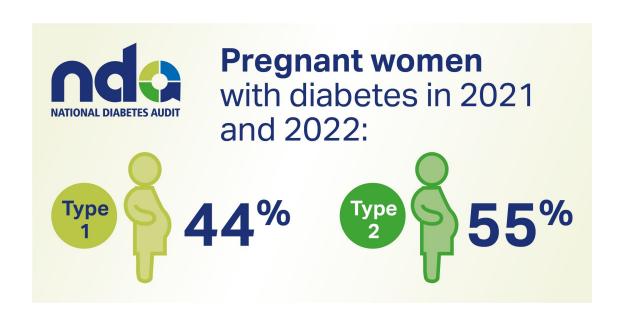
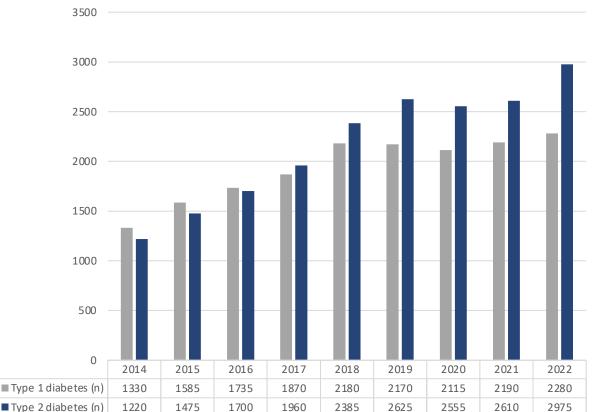


Right Technology, Right Person, Right Timing: pregnancy, technology and type 1 diabetes

Dr Tara T.M. Lee


DRWF Sutherland-Earl Clinical Research Fellow
Specialty Registrar O&G
Tara.Lee@uea.ac.uk



What this session covers

- ✓ Pregnancy Outcomes: National Pregnancy in Diabetes (NPID) data
- ✓ Evidence for using CGM in pregnancy
- ✓ Evidence for HCL including AiDAPT RCT
- √ Tips for real-world HCL implementation

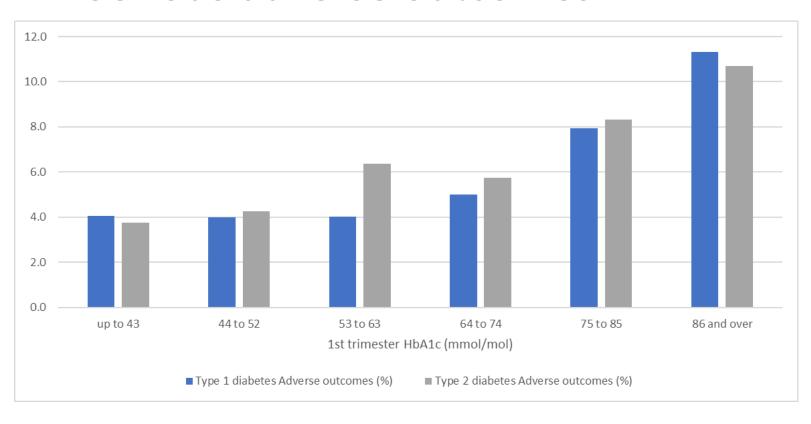
NPID 34,770 pregnancies: 15,265 T1D & 19,505 T2D

Prevalence (n) of type 1 and type 2 diabetes in England and Wales

N= 4,290 T1D and N= 5,415 EOT2D

What is a successful pregnancy outcome?

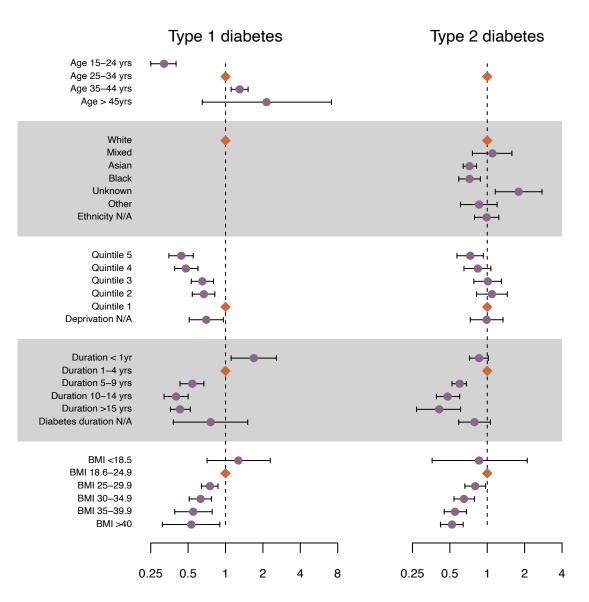
- Live mother & baby no stillbirth/neonatal death (98.8% vs 99.6%)
- No congenital anomaly
- Uncomplicated delivery
- Baby normal size (<90th centile)
- No neonatal hypoglycaemia, jaundice, respiratory distress
- No neonatal intensive care unit (NICU)


Effective Communication About Pregnancy, Birth, Lactation, Breastfeeding and Newborn Care: The Importance of Sexed Language

Gribble KD et al, Front Glob Womens Health. 2022 Feb 7;3:818856.

https://www.frontiersin.org/articles/10.3389/fgwh.2022.818856/full

Early pregnancy HbA1c


Serious adverse outcomes

https://digital.nhs.uk/data-and-information/publications/statistical/national-pregnancy-in-diabetes-audit/2022

HbA1c depends (almost entirely) on patient characteristics

Odds ratio of first trimester HbA1c <48 mmol/mol (6.5%)

Complications are common & increasing 2014-20

LGA

1 in 2 women with **T1D**

1 in 4 women with T2D

Caesarean section

3 in 4 of babies of mums with **T1D**

1 in 2 of babies of mums with T2D

Preterm birth

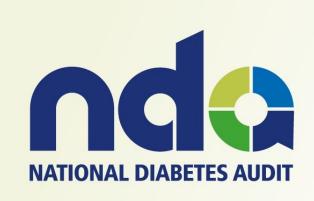
1 in 2 women with **T1D**

1 in 4 women with T2D

NICU

1 in 2 babies of mums with T1D

1 in 3 babies of mums with T2D



CGM helps in T1D pregnancy (CONCEPTT) **Fingerprick users** Higher HbA1c 6.5% Less TIR (61%TIRp) Fingerprick users More LGA (69%) More & longer NICU (43%) Time in range N= 107 More neonatal hypoglycaemia (28%) Mum's glucose **CGM** users - 82% Fewer LGA (53%) Fewer shorter NICU (27%) Less neonatal **CGM** users hypoglycaemia (15%) Lower HbA1c 6.3% Time in range N= 108 Higher TIR (68% TIRp) Created using biorender.com Feig DS et al. Lancet 2017

NICE NG3 updated guidance 16th December 2020

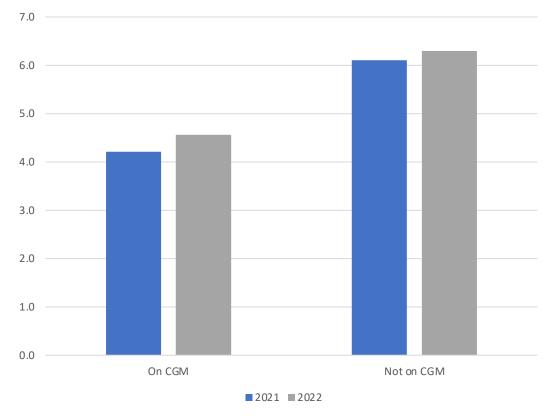
Intermittently scanned CGM and continuous glucose monitoring

- 1.3.17 Offer continuous glucose monitoring (CGM) to all pregnant women with type 1 diabetes to help them meet their pregnancy blood glucose targets and improve neonatal outcomes. [2020]
- 1.3.18 Offer intermittently scanned CGM (isCGM, commonly referred to as flash) to pregnant women with type 1 diabetes who are unable to use continuous glucose monitoring or express a clear preference for it. [2020]
- 1.3.19 Consider continuous glucose monitoring for pregnant women who are on insulin therapy but do not have type 1 diabetes, if:
 - they have problematic severe hypoglycaemia (with or without impaired awareness of hypoglycaemia) or
 - they have unstable blood glucose levels that are causing concern despite efforts to optimise glycaemic control. [2015, amended 2020]
- 1.3.20 For pregnant women who are using isCGM or continuous glucose monitoring, a member of the joint diabetes and antenatal care team with expertise in these systems should provide education and support (including advising women about sources of out-of-hours support). [2020]

95% of women with type 1 diabetes wore continuous glucose monitors in 2022

Real-world CGM use - N=2055

Wearing continuous **glucose montiors** improved:



- glucose levels for mothers
- outcomes for women and babies

Improved pregnancy glucose levels with:

- ✓ Fewer LGA babies LGA >90th 54 vs 49%
- ✓ Fewer preterm births 49 vs 42%
- ✓ Fewer neonatal care admissions
 46 vs 40%

Serious adverse pregnancy outcomes (Birth defects, stillbirth, baby death)



NPID State of the Nation report Oct 2023

N=2055 (825 in 2021 + 1230 in 2022) CGM users had reduced risk serious adverse outcomes - OR 0.70 95% CI 0.53-0.94; P=0.015

CGM Time in T1D Pregnancy Range (TIRp)

Challenges to managing diabetes in pregnancy

Tighter pregnancy targets

Aiming HbA1c <43 by 3rd trimester

Changing insulin resistance and sensitivity

Increased day to day variability

Fear of hyperglycaemia and effect on baby

Gestation	What to expect?
4-8 weeks	Very labile glucose levels
8-16 weeks	Increased hypos and insulin sensitivity
16 weeks +	Increasing insulin resistance – often every few days
Late 3 rd trimester	Slight increase in insulin sensitivity
Straight after delivery	Rapid decrease in insulin requirements Transient 'insulin holiday'

Huge mental burden of self-management

Dahlberg & Berg,
Int J Qual Stud Health Well-being 2020
The lived experiences of healthcare during pregnancy, birth, and three months after in

women with type 1 diabetes mellitus

Automated insulin Delivery in T1D pregnancy

CLIP-02

Murphy HR et al. (2011)

Crossover RCT

n = 12

24hr closed-loop vs. SAP

2 x 24hr inpatient admissions

Snacks, meals and exercise

CLIP-04

Stewart ZA et al. (2018)

Crossover RCT

n = 16

4 weeks 24hr HCL vs. SAP

Home setting

Commercialised HCL (2020)

CamAPS Fx Licensed in pregnancy

CLIP-01

Murphy HR et al. (2011)

Exploratory safety study

n = 10

2 x 24hr inpatient admissions

1st: early pregnancy (12-16 weeks)

2nd: late pregnancy (28-32 weeks)

High carbohydrate meals

CLIP-03

Stewart ZA et al. (2016)

Crossover RCT

n = 16

4 weeks overnight

HCL vs. SAP

Home setting

Optional continuation

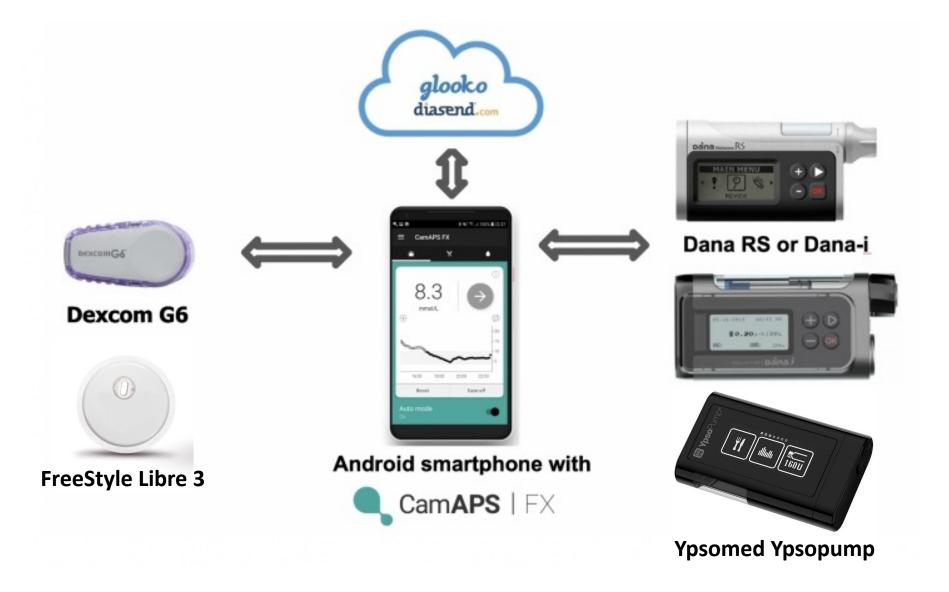
Adaptability in labour and delivery

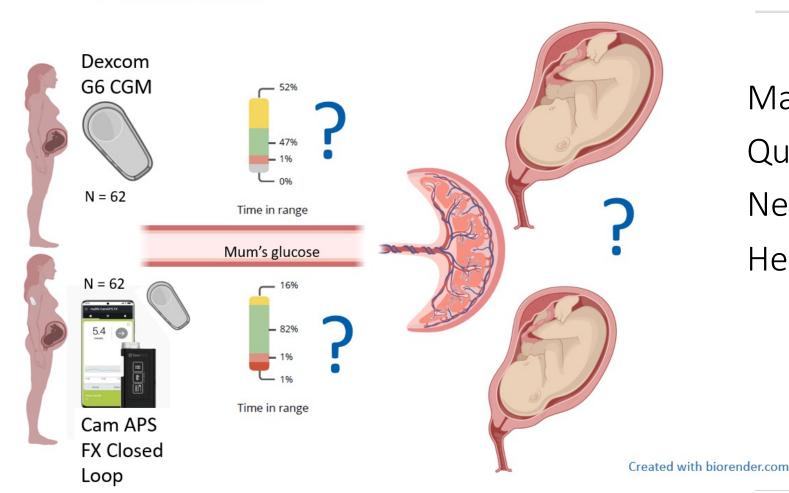
Stewart ZA et al. (2018)

n = 27

Continuation phase of CLIP-03 and CLIP-4 for rest of pregnancy including

home and hospital settings





CamAPS FX (CamDiab)

<u>Automated Insulin Delivery Amongst</u> <u>Pregnant women with Type 1</u> <u>diabetes</u>

Maternal glucose (TiRp)

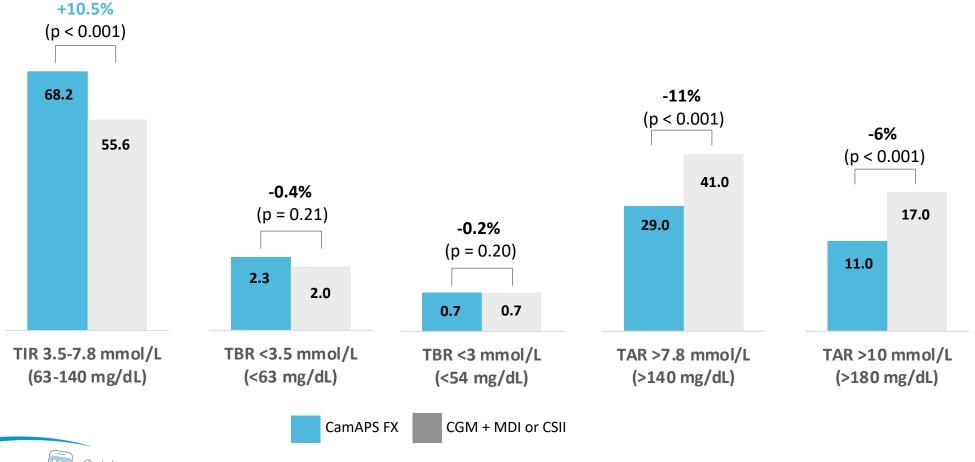
Qualitative data

Neonatal outcomes (NICU, LGA)

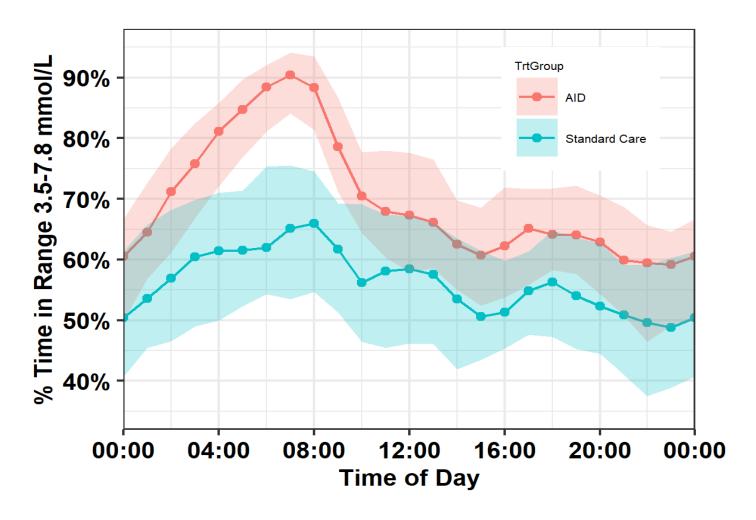
Health economic data

National Institute for Health Research

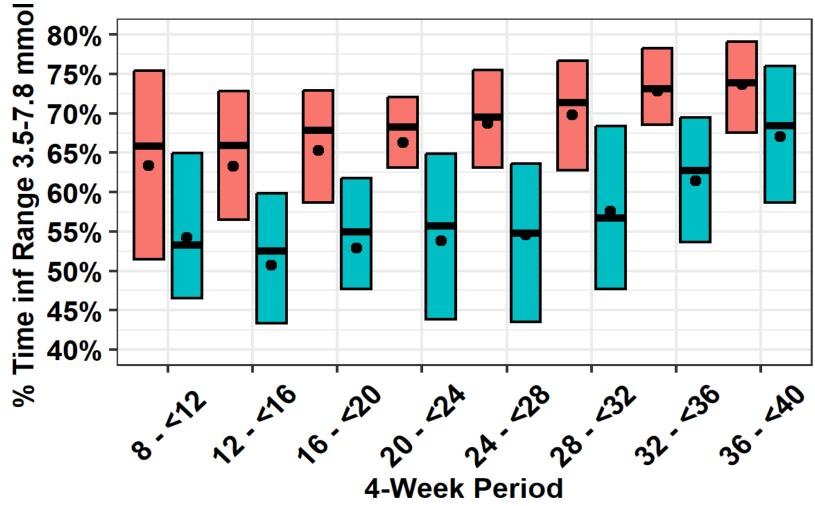
% Time in the Pregnancy range (3.5 – 7.8mmol/L)


	Baseline		16 weeks' gestation until delivery		
End Points	Closed loop (N=59)	Standard care (N=59)	Closed loop (N=59)	Standard care (N=61)	P-value ^a
% TIR 3.5-7.8 mmol/l	47.8% ± 16.4%	44.5% ± 14.4%	68.2% ± 10.5%	55.6% ± 12.5%	NA
Change from baseline	NA	NA	20.4% ± 13.8%	11.0% ± 11.6%	NA
Adjusted difference ^a mean (95% CI)			10.5% (7.0%, 14.0%)		<0.001

Data are mean ± SD or median (IQR)


^a Model adjusted for baseline % TIR, insulin delivery, and site as a random effect

CamAPS FX improved TiRp by reducing hyperglycaemia



CamAPS FX improved TiRp across 24-hr day

CamAPS FX improved TiRp from ~12 weeks

Additional Benefits.....

- ✓ Less worry, less work, more enjoyable pregnancy
- √ 3.7kg less gestational weight gain
- ✓ Less gestational hypertension
- ✓ Low rates of LGA/NICU

Time in Range by Patient Characteristics

	Closed loop			P-value for	
	N	Change from baseline (mean ± SD)	N	Change from baseline (mean ± SD)	interaction
Overall	59	20% ± 14%	59	11% ± 12%	
Maternal Age					0.91
18-24	9	20% ± 15%	15	14% ± 13%	
25-35	41	19% ± 13%	35	10% ± 12%	
>35	9	25% ± 16%	9	9% ± 8%	
Baseline HbA1c					0.91
≥42 - 53mmol/mol	22	17% ± 11%	11	10% ± 10%	
≥53 - 64mmol/mol	20	26% ± 16%	23	12% ± 12%	
≥64mmol/mol	17	18% ± 13%	25	10% ± 12%	
Insulin pre-enrolment					0.91
Pump	30	19% ± 13%	22	8% ± 10%	
MDI	27	22% ± 14%	36	13% ± 12%	
AID	2	20% ± 18%	1	9% ± 0	

Time in Range by Baseline HbA1c

Baseline HbA1c	Closed-loop	Control
≥42 - 53mmol/mol	17% ± 11%	10% ± 10%
≥53 – 64mmol/mol	26% ± 16%	12% ± 12%
≥64mmol/mol	18% ± 13%	10% ± 12%

Interaction p-value=0.91

Data are mean ± SD

FDR-adjusted p-value for interactions between treatment group

Hybrid Closed Loop (HCL) is recommended for women with type 1 diabetes who are pregnant or planning pregnancy

Hybrid closed loop systems for managing blood glucose levels in type 1 diabetes

In development [GID-TA10845] Expected publication date: TBC Register as a stakeholder

NICE RECOMMENDS LIFE CHANGING TECHNOLOGY IS ROLLED OUT TO PEOPLE WITH TYPE 1 DIABETES

PRESS RELEASE

NICE recommends life changing technology is rolled out to people with type 1 diabetes

An announcement of the recommendations was made today (Tuesday 7 November) at NICE's annual conference in Manchester by NICE chief executive Dr Sam Roberts

Thousands of people with type 1 diabetes could be offered wearable technology to help them manage their condition following the publication of final draft guidance by NICE.

An independent NICE committee has recommended peoplowhose diabetes is not controlled with their current device despite best possible management with an insulin pump, or real-time or intermittently scanned continuous glucose monitoring, are offered a hybrid closed loop system.

ABOUT THE RECOMMENDATIONS

- 1. Hybrid closed loop systems are recommended as an option for managing blood glucose levels in type 1 diabetes for adults who have an HbA1c of 58 mmol/mol (7.5%) or more, or have disabling hypoglycaemia, despite best possible management with at least 1 of the following:
- continuous subcutaneous insulin infusion (CSII)
- real-time continuous glucose monitoring
 intermittently scanned continuous glucose monitoring.
- 2. Hybrid closed loop systems are recommended as an option for managing blood glucose levels in type 1 diabetes for children and young people.

3. Hybrid closed loop systems are recommended as an option for managing blood glucose levels in type 1 diabetes for people who are pregnant or planning a pregnancy.

07 November 2023

CamAPS FX

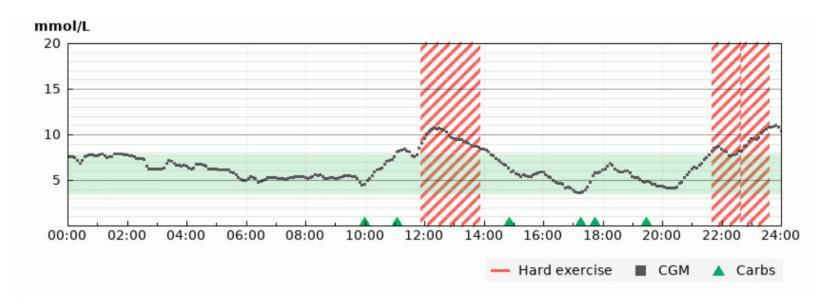
n = 59

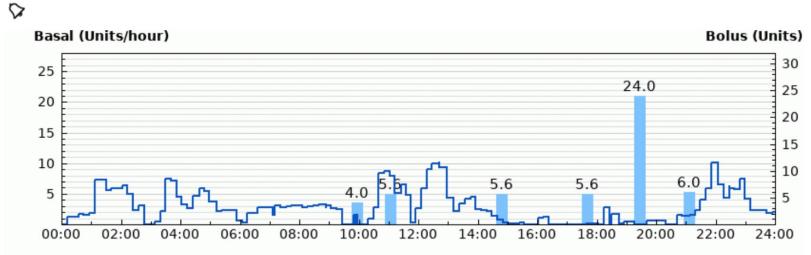
- ✓ 50% achieved TIRp 70%
- √ 3.7kg less weight gain
- ✓ LGA 39%

Off-label Commercial HCL

Medtronic 780G (80%)

Tandem Control IQ (10%)


Diabeloop (10%)


n=59

- ✗ 5% achieved TIRp 70%
- X 3.3-5.4 kg more weight gain
- X LGA on HCL 69%

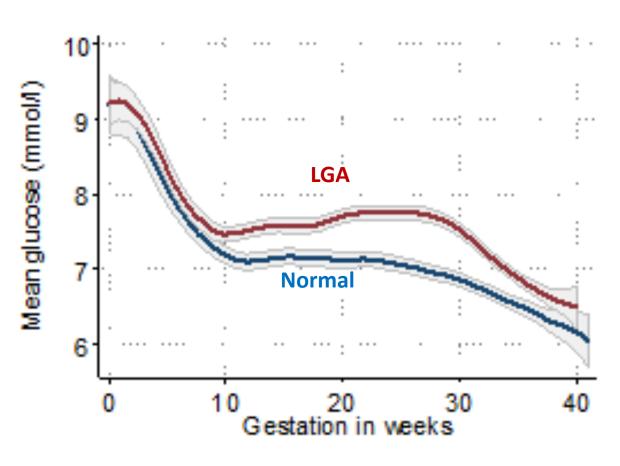
Quiros C et al Diabetes Technol Ther. 2024 Feb 28. Epub ahead of print;

How does CamAPS Fx work?

- Modulates basal insulin delivered by adjusting insulin every 8-12 minutes
- Hybrid closed-loop Still requires insulin boluses for carbohydrate

What can we do and when?

Starting off


Optimisation during pregnancy

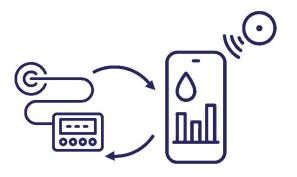
Intrapartum and Delivery

Postnatal

When do we start Hybrid Closed Loop (HCL)?

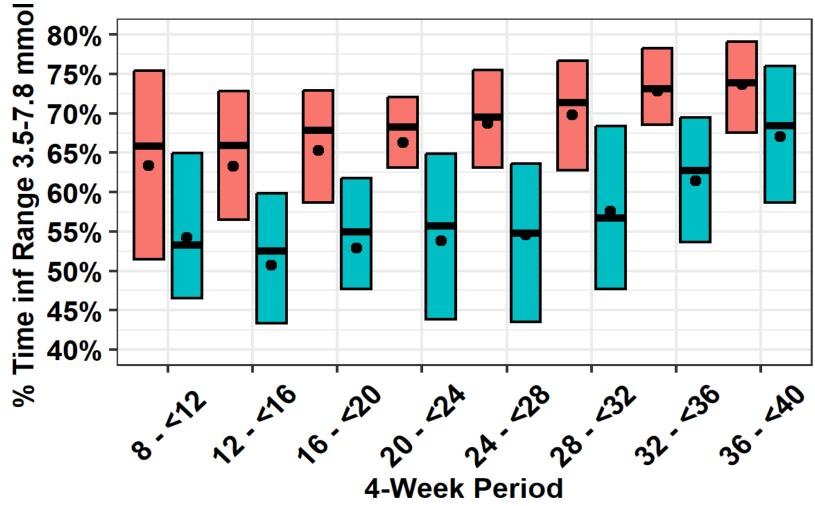
A) Mean glucose (mmol/l)

- Maternal glucose trajectory by ~10 weeks gestation determines the relationship to birthweight for the rest of pregnancy
- Demonstrates central role of maternal glucose to the pathogenesis of LGA from early gestation
- Normal growth associated with mean glucose of <7 mmol/l (<126 mg/dL) (from ~10 weeks)


What can we do and when?

Starting off

Optimisation during pregnancy


Intrapartum and Delivery

Postnatal

- Start pre-pregnancy or as soon as possible once pregnancy confirmed
- Remember if 1st trimester to watch for hypos / labile levels
- Improvement in glycaemia seen in days

CamAPS FX improved TiRp from ~12 weeks

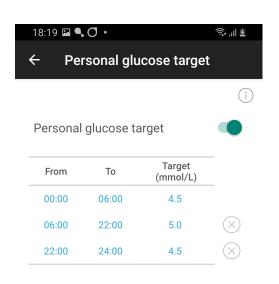
Supporting optimal HCL use?

Starting off

Optimisation during pregnancy

Intrapartum and Delivery

Postnatal



- Personal glucose targets
- Meals:
 - Pre-bolus interval
 - Insulin-carbohydrate ratios
- Use of boost and ease-off
- Set changes/check basal rates

Personal glucose target

Algorithm target adjustable at different times of day & night

Suggested algorithm targets in pregnancy:

- 1st trimester: 5.5 mmol/L
- 2nd trimester (or earlier if hypo risk low): 4.5-5.0 mmol/L
- Postpartum 6.0mmol/L

Treat to target:

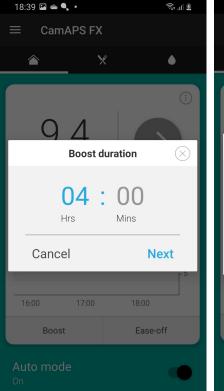
- TIR (3.5-7.8 mmol/L): >70%
- mean glucose: 6.0-6.5 mmol/L

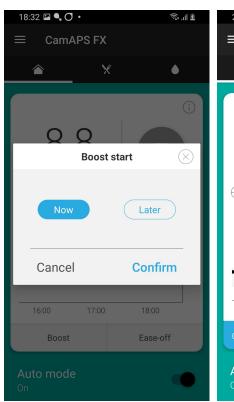
When to adjust target

- Lower target if glucose variability low
- Raise target if period of frequent hypoglycaemia

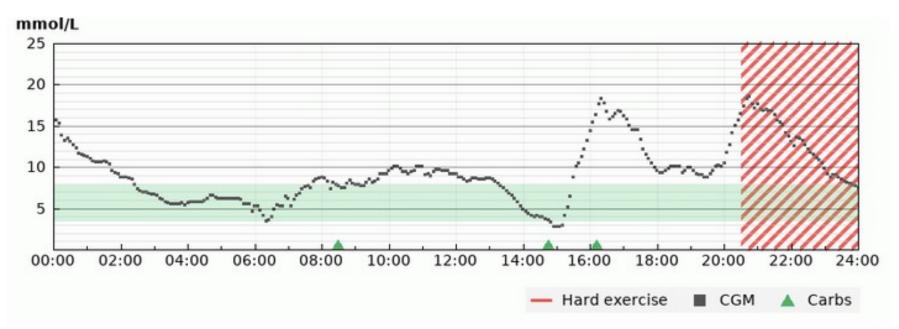
Other Hybrid Closed-Loop Systems

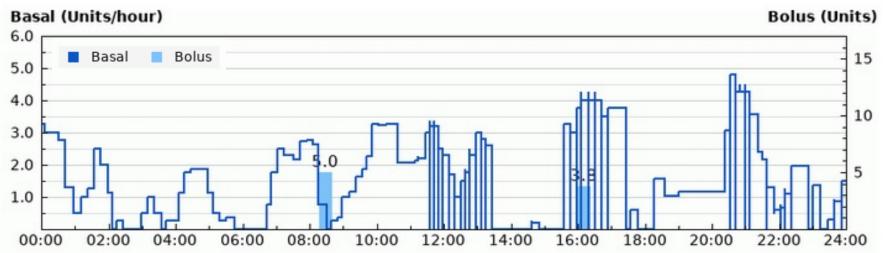
	Medtronic MiniMed 670/770G	Medtronic MiniMed 780G	Tandem Control IQ	Omnipod 5
Algorithm	Automode - Uses TDD from last 2-6 days	SmartGuard Mode - Uses TDD from last 2-6 days - Automated corrections (max. every 5 mins)	Control-IQ - Adjusts programmed basal rates in response to glucose - Automated corrections (max 1/hr) to target 6.1mmol/L	Omnipod 5 - Automated basal based on programmed basal rates (after 1 st pod change, based on actual TDD)
Glucose target (mmol/L)	6.7 Temp target 8.3	5.6, 6.1 or 6.7 Temp target 8.3	Regular 6.3 – 8.9 Sleep 6.3 – 6.7 Exercise 7.8 – 8.9	6.1, 6.7, 7.2, 7.8 or 8.3
Modifiable settings in automated mode	I:C ratio Active insulin time	I:C ratio Active insulin time	I:C ratios Basal rates Correction factor	I:C ratio Correction factor Active insulin time Target glucose
Data upload destination	Carelink	Carelink	Diasend (Manual upload)	Diasend


Boost

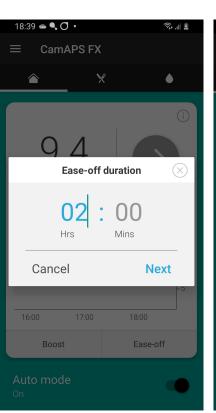

- Increases basal insulin delivery by ~35%
- Once glucose reaches target, boost <u>will not</u> continue to increase insulin delivery

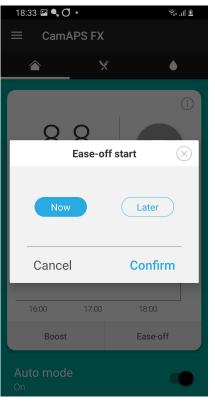
- Post-prandial hyperglycaemia
- Low grade illness (not requiring sick day rules)





Boost





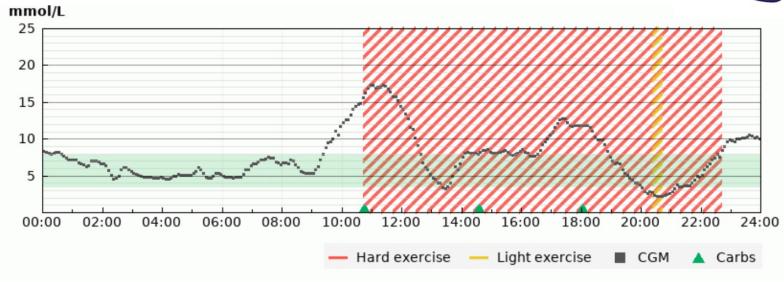
Ease off

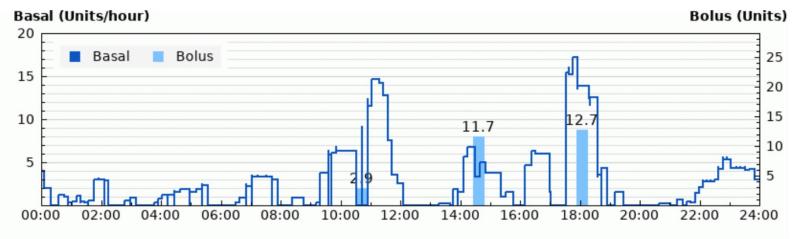
- Substantially reduces basal insulin delivery
- Raises glucose target temporarily
- Insulin delivery will suspend at a higher level

When to use Ease Off?

- Before, during and/or after exercise/activity
- Following hypoglycaemia
- Hot weather

Meals and Pre-bolusing



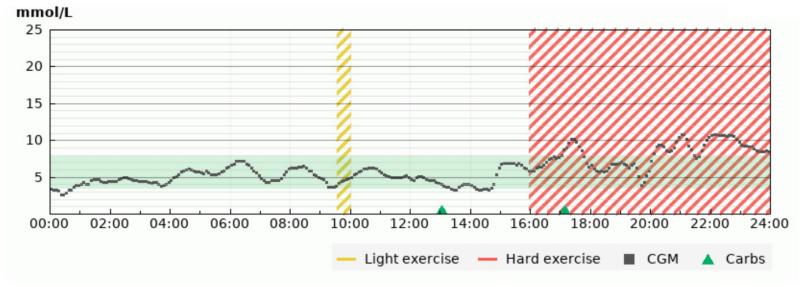

Strengthen insulin-carbohydrate ratios

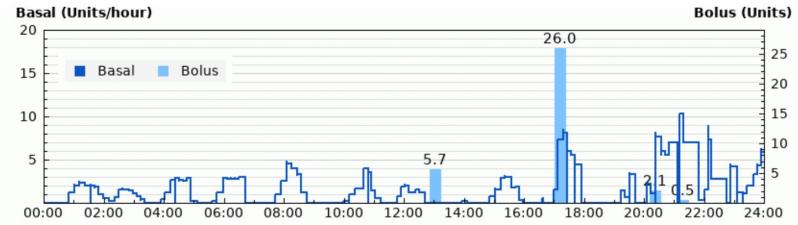
To keep up with increasing insulin resistance

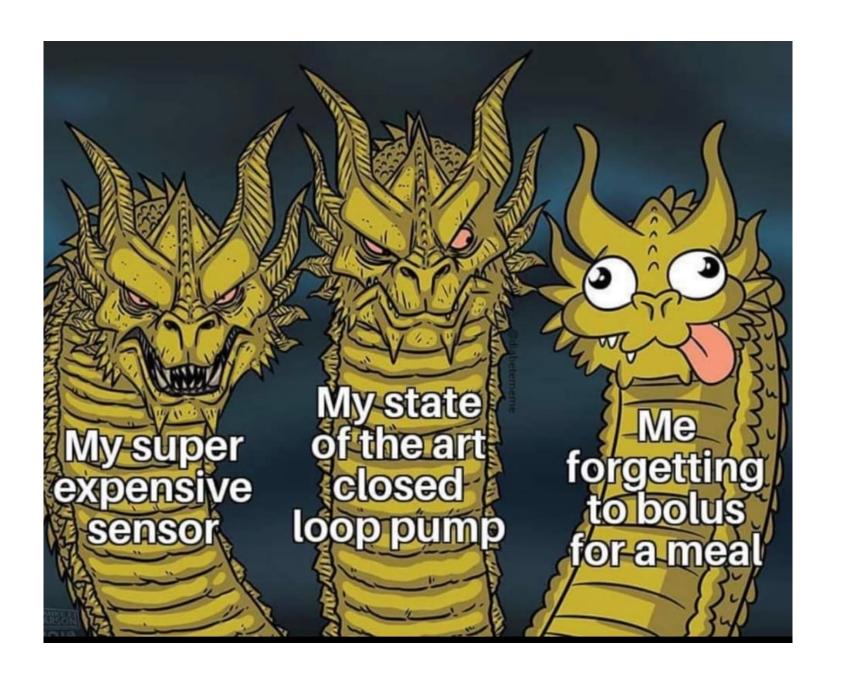
Mismatch of insulin and carbohydrates

- Exaggerated glucose peak (unannounced)
- Delayed insulin peak
- Insulin stacking
- Uncontrolled drop in BG and likely hypoglycaemia

Meals and Pre-bolusing




Suggested bolus interval


First trimester: 10-15mins

Second trimester: 20-30mins

Third trimester: 45-60mins

Set changes

Suggested set change frequency

Pre-pregnancy - first trimester: At most every 3 days

> Second-third trimester: May need to increase to alternate days / daily

What can we do and when?

Starting off

Optimisation during pregnancy

Intrapartum and Delivery

Postnatal

- Labour
- Theatre and caesarean sections
- Steroid administration for fetal lung maturation

When is it safe to continue?

Mother is well enough and happy to self-manage

If unwell or not able to confident self-manage -> IV insulin

Tips and settings for labour

Image: labourpains.org (OAA public information)

Challenges

- Unpredictable
- May not be eating (if on IV oxytocin)
- Varying targets (4-7mmol/mol OR 5-8mmol/mol)
- Maternal steroid administration

Guidance for labour

Continue automode

Continue existing PGT programme

Use of boost / ease off

Encourage to use CGM data to guide intake

Tips and settings for caesarean section

Challenges and considerations

- Placement of sensor and pump cannula
- Period of time NBM
- Varying targets (4-7mmol/mol OR 5-8mmol/mol)

Guidance

- Continue automode
- Switch to postnatal settings in anaesthetic room prior
- Use of ease off / boost to further modulate

What can we do and when?

Starting off

Optimisation during pregnancy

Intrapartum and Delivery

Postnatal

- Rapid drop in insulin requirements as soon as placenta is delivered
- Watch for hypoglycaemia
- Breastfeeding

Tips and immediate postnatal settings

Image: kieferpix/Getty Images

Guidance

- PGT -> 6.0
- Target range (3.9 10.0mmol/mol)
- ICR 1:12g or 1:15g
- Adjust basal rates (in case out of auto mode)
 - 1/2 end of pregnancy basal rates
 - Pre-pregnancy rates

Further guidance for breastfeeding

Guidance

- Ease off
- ICR 1:15g (can always be strengthened after a few days)
- Have pre-packaged hypo treatments / snacks
- Can raise PGT if still struggling with hypos

Image: diatribe.org

Take home messages

- ✓ CGM has revolutionized T1D care
- ✓ CGM alone (and/or with CSII) inadequate for optimal glycaemia
- ✓ Not all HCL algorithms are the same

 Only CamAPS Fx has targets adjustable for pregnancy

 has evidence of improved maternal glycaemia
 is licensed in pregnancy
- ✓ For those on HCL not licensed in pregnancy
 We await data in pregnancy
 Consider switching to CamAPS Fx
 Consider coming out of hybrid closed loop (auto-mode) during pregnancy
- ✓ Aim for 70% TIRp but every 5% matters
- ✓ Start early with rapid optimisation of PGT and CIR

