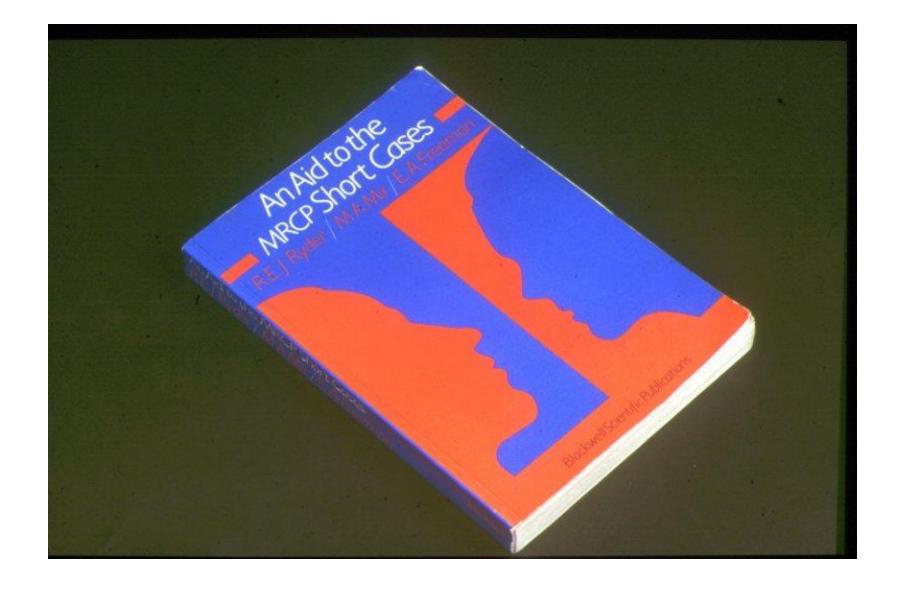
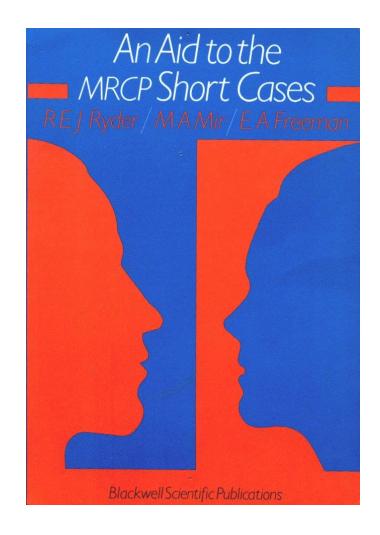
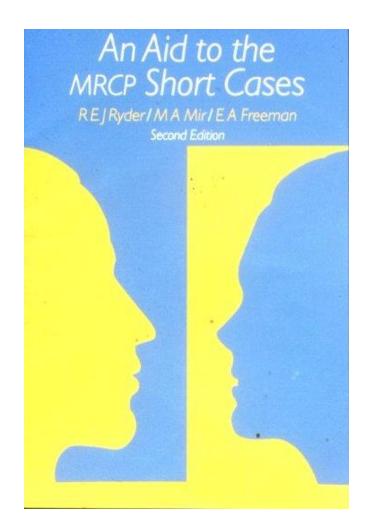
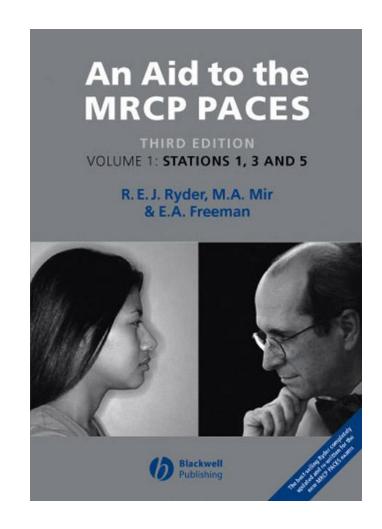
Reducing cardiovascular risk in type 2 diabetes

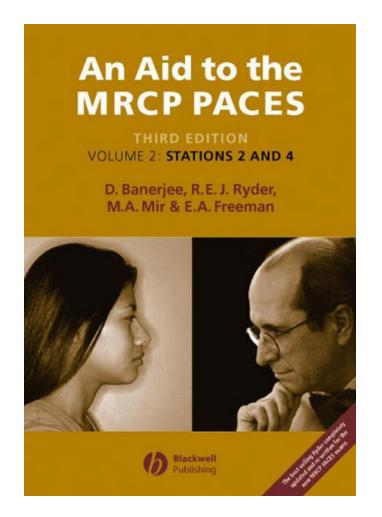
Dr Bob Ryder, Consultant Diabetologist, City Hospital, Birmingham

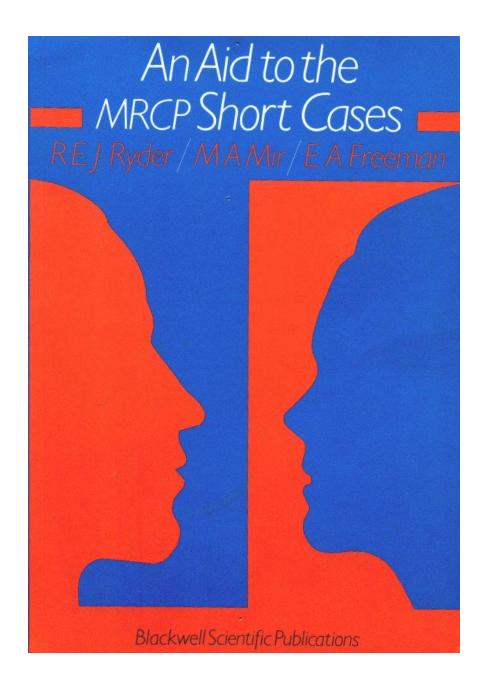

ABCD Midlands Regional Meeting 2025

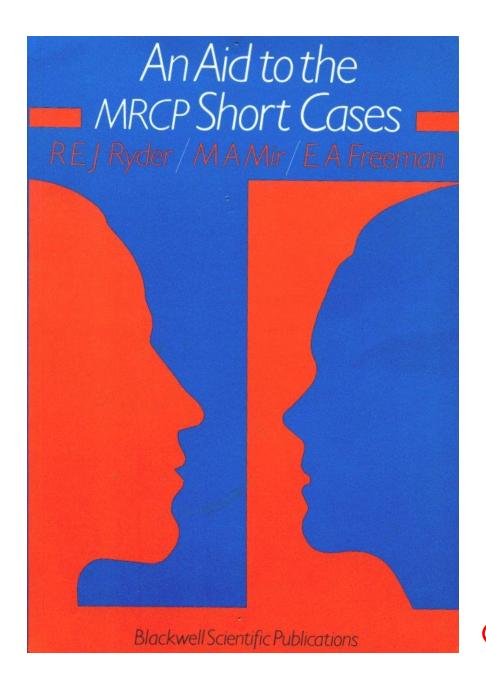

1, October 2025


Disclosures


 Dr Bob Ryder has received speaker fees, and/or consultancy fees and/or educational sponsorships from Abbott, AstraZeneca, Besins, BioQuest, Morphic Medical and Novo Nordisk


Prologue





Section 4 Experiences, Anecdotes, Tips, Facts and Figures, Quotations

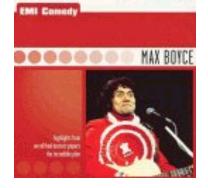
Tknow 'cos I was there'*

*MAX BOYCE

Section 4
Experiences, Anecdotes, Tips,
Facts and Figures, Quotations

Tknow 'cos I was there'*

I know 'cos I was there!


Wales

New Zealand

Questions

A SLIGHT CORMETION!

MAX BOTLE - 1 WAS THERE!

- STEMMED FROM CLANECLI BEATING THE 'ALL BLACKS'

IN STRAOT PARM ON OCT. 31 " 1972.

FINAL SCORE - LLANGUI 9 N.2. 3.

AND THEN THE PUBS RAN DRY!

I WAS THENE AS WEU!

SADLY, WALES HAVEN'T BEAT THE ALL BLACKS SINCE THE 1950'S. HOWEVER! IN JANUARY 1973,
THE BARBADIANS BEAT N. ZETHLAND - WITH MANY WELSH PLATEN IN THE SIDE!!)

Results [edit]

No.	Date	Venue	Score		Winner	Competition	
1	16 December 1905	Cardiff Arms Park, Cardiff	3–0	*	Wales	The Original All Blacks tour	
2	29 November 1924	St Helen's, Swansea	0–19	906	New Zealand	1924–25 New Zealand tour of France, Great Britain and Ireland	
3	21 December 1935	National Stadium, Cardiff	13–12	*	Wales	1935–36 New Zealand tour of Canada, Great Britain and Ireland	
4	19 December 1953	National Stadium, Cardiff	13-8	÷	Wales	1953–54 New Zealand tour of Europe and North America	
5	21 December 1963	National Stadium, Cardiff	0–6	ME (New Zealand	1963–64 New Zealand tour of Europe and North America	
6	11 November 1967	National Stadium, Cardiff	6–13	966 ()	New Zealand	1967 New Zealand tour of Great Britain, France and Canada	
7	31 May 1969	Lancaster Park, Christchurch	19–0	906 (*)	New Zealand	1969 Wales tour of New Zealand, Australia and Fiji	
8	14 June 1969	Eden Park, Auckland	33–12	ME (-)	New Zealand		
9	2 December 1972	National Stadium, Cardiff	16–19	90E (*)	New Zealand	1972–73 New Zealand tour of Europe and North America	
10	11 November 1978	National Stadium, Cardiff	12–13	無 心	New Zealand	1978 New Zealand tour of Great Britain and Ireland	
11	1 November 1980	National Stadium, Cardiff	3–23	906.7	New Zealand	1980 New Zealand tour of North America and Wales	
12	14 June 1987	Ballymore Stadium, Brisbane (Australia)	49–6	906 /·	New Zealand	1987 Rugby World Cup Semi-finals	
13	28 May 1988	Lancaster Park, Christchurch	52-3	906 _(*)	New Zealand	1988 Wales tour of New Zealand	
14	11 June 1988	Eden Park, Auckland	54–9	90E /-	New Zealand	1300 Wales four of New Zealand	
15	4 November 1989	National Stadium, Cardiff	9–34	100	New Zealand	1989 New Zealand tour of Great Britain, Ireland and North Americ	
16	31 May 1995	Ellis Park, Johannesburg (South Africa)	34–9	906 (*)	New Zealand	1995 Rugby World Cup Pool match	
17	29 November 1997	Wembley Stadium, London (England)	7–42	906 /·	New Zealand	1997 New Zealand tour of Great Britain and Ireland	
18	23 November 2002	Millennium Stadium, Cardiff	17–43	906 j.	New Zealand	2002 Autumn International	
19	21 June 2003	Waikato Stadium, Hamilton	55–3	90E /-	New Zealand	2003 Wales tour of Australia and New Zealand	
20	2 November 2003	Stadium Australia, Sydney (Australia)	53–37	906 y	New Zealand	2003 Rugby World Cup Pool match	
21	20 November 2004	Millennium Stadium, Cardiff	25–26	906 / ·	New Zealand	2004 Autumn International	
22	5 November 2005	Millennium Stadium, Cardiff	3–41	906 /·	New Zealand	2005 Autumn International	
23	25 November 2006	Millennium Stadium, Cardiff	10-45	906 j.	New Zealand	2006 Autumn International	
24	22 November 2008	Millennium Stadium, Cardiff	9–29	90E /-	New Zealand	2008 Autumn International	
25	7 November 2009	Millennium Stadium, Cardiff	12–19	90E (*)	New Zealand	2009 Autumn International	
26	19 June 2010	Carisbrook, Dunedin	42-9	906 ₍₁)	New Zealand	2010 Wales tour of New Zealand	
27	26 June 2010	Waikato Stadium, Hamilton	29–10	906 (*)	New Zealand		
28	27 November 2010	Millennium Stadium, Cardiff	25–37	906	New Zealand	2010 Autumn International	
29	24 November 2012	Millennium Stadium, Cardiff	10-33	30	New Zealand	2012 Autumn International	
30	22 November 2014	Millennium Stadium, Cardiff	16–34	緩少	New Zealand	2014 Autumn International	
31	11 June 2016	Eden Park, Auckland	39–21	900 y	New Zealand		
32	18 June 2016	Wellington Regional Stadium, Wellington	36–22	90E /-	New Zealand	2016 Wales tour of New Zealand	
33	25 June 2016	Forsyth Barr Stadium, Dunedin	46-6	ME ()	New Zealand		
34	25 November 2017	Millennium Stadium, Cardiff	18–33	906 (*)	New Zealand	2017 Autumn International	
35	1 November 2019	Tokyo Stadium, Chōfu (Japan)	40–17	緩少	New Zealand	2019 Rugby World Cup Bronze Final	
36	30 October 2021	Millennium Stadium, Cardiff	16–54	906 g	New Zealand	2021 Autumn International	
37	5 November 2022	Millennium Stadium, Cardiff	23-55	906	New Zealand	2022 Autumn International	

Results: Wales vs All Blacks

Results [edit]

No.	Date	Venue	Score	Winner	Competition	
1	16 December 1905	Cardiff Arms Park, Cardiff	3–0	₩ Wales	The Original All Blacks tour	
2	29 November 1924	St Helen's, Swansea	0–19	New Zealand	1924–25 New Zealand tour of France, Great Britain and Ireland	
3	21 December 1935	National Stadium, Cardiff	13–12	≇ Wales	1935–36 New Zealand tour of Canada, Great Britain and Ireland	
4	19 December 1953	National Stadium, Cardiff	13–8	₩ Wales	1953–54 New Zealand tour of Europe and North America	
5	21 December 1963	National Stadium, Cardiff	0–6	Mew Zealand	1963–64 New Zealand tour of Europe and North America	
6	11 November 1967	National Stadium, Cardiff	6–13	Mew Zealand	1967 New Zealand tour of Great Britain, France and Canada	
7	31 May 1969	Lancaster Park, Christchurch	19–0	Mew Zealand	1969 Wales tour of New Zealand, Australia and Fiji	
8	14 June 1969	Eden Park, Auckland	33–12	Mew Zealand	1909 Wales tour of New Zealand, Australia and Fig.	
9	2 December 1972	National Stadium, Cardiff	16–19	Mew Zealand	1972–73 New Zealand tour of Europe and North America	
10	11 November 1978	National Stadium, Cardiff	12–13	New Zealand	1978 New Zealand tour of Great Britain and Ireland	
11	1 November 1980	National Stadium, Cardiff	3–23	Mew Zealand	1980 New Zealand tour of North America and Wales	
12	14 June 1987	Ballymore Stadium, Brisbane (Australia)	49–6	Mew Zealand	1987 Rugby World Cup Semi-finals	
13	28 May 1988	Lancaster Park, Christchurch	52-3	Mew Zealand	1988 Wales tour of New Zealand	
14	11 June 1988	Eden Park, Auckland	54–9	Mew Zealand	1300 Wales tour of New Zealand	
15	4 November 1989	National Stadium, Cardiff	9–34	New Zealand	1989 New Zealand tour of Great Britain, Ireland and North Americ	
16	31 May 1995	Ellis Park, Johannesburg (South Africa)	34–9	Mew Zealand	1995 Rugby World Cup Pool match	
17	29 November 1997	Wembley Stadium, London (England)	7–42	Mew Zealand	1997 New Zealand tour of Great Britain and Ireland	
18	23 November 2002	Millennium Stadium, Cardiff	17–43	New Zealand	2002 Autumn International	
19	21 June 2003	Waikato Stadium, Hamilton	55–3	Mew Zealand	2003 Wales tour of Australia and New Zealand	
20	2 November 2003	Stadium Australia, Sydney (Australia)	53–37	New Zealand	2003 Rugby World Cup Pool match	
21	20 November 2004	Millennium Stadium, Cardiff	25–26	Mew Zealand	2004 Autumn International	
22	5 November 2005	Millennium Stadium, Cardiff	3–41	Mew Zealand	2005 Autumn International	
23	25 November 2006	Millennium Stadium, Cardiff	10-45	Mew Zealand	2006 Autumn International	
24	22 November 2008	Millennium Stadium, Cardiff	9–29	Mew Zealand	2008 Autumn International	
25	7 November 2009	Millennium Stadium, Cardiff	12–19	Mew Zealand	2009 Autumn International	
26	19 June 2010	Carisbrook, Dunedin	42-9	Mew Zealand	2010 Wales tour of New Zealand	
27	26 June 2010	Waikato Stadium, Hamilton	29–10	Mew Zealand	2010 Trailed told Of New Zealand	
28	27 November 2010	Millennium Stadium, Cardiff	25–37	Mew Zealand	2010 Autumn International	
29	24 November 2012	Millennium Stadium, Cardiff	10-33	Mew Zealand	2012 Autumn International	
30	22 November 2014	Millennium Stadium, Cardiff	16-34	Mew Zealand	2014 Autumn International	
31	11 June 2016	Eden Park, Auckland	39–21	Mew Zealand		
32	18 June 2016	Wellington Regional Stadium, Wellington	36–22	New Zealand	2016 Wales tour of New Zealand	
33	25 June 2016	Forsyth Barr Stadium, Dunedin	46-6	Mew Zealand		
34	25 November 2017	Millennium Stadium, Cardiff	18–33	Mew Zealand	2017 Autumn International	
35	1 November 2019	Tokyo Stadium, Chōfu (Japan)	40–17	New Zealand	2019 Rugby World Cup Bronze Final	
36	30 October 2021	Millennium Stadium, Cardiff	16–54	Mew Zealand	2021 Autumn International	
37	5 November 2022	Millennium Stadium, Cardiff	23-55	New Zealand	2022 Autumn International	

Results: Wales vs All Blacks

BBC HOMEPAGE | WORLD SERVICE | EDUCATION

B B C NEWS

Front Page
World
UK
England
Northern
Ireland
Scotland
Wales
UK Politics
Business
Sci/Tech
Health
Education
Entertainment
Talking Point
In Depth

AudioVideo

You are in: UK: Wales

Thursday, 20 July, 2000, 16:38 GMT 17:38 UK

The day the Scarlets made history

The 1972 side which beat the All Blacks is still revered

Around Llanelli, people will still remind you of the day the Scarlets beat the mighty All Blacks.

Rugby was already the conversation topic of choice in the town where "scarlet fever" was a common condition. But the 9-3 victory for the club against one of the best nations in the world still remains a source of pride.

October 31, 1972, had been a miserable day around Stradey Park, but the pubs ran dry at night, as Carwyn James - just returned from coaching a successful British Lions trip to New Zealand - led his club to victory.

Captain Delme Thomas had given individual team talks to each player, bringing tears to the eyes of Phil Bennett. The squad was given a police escort to the ground, where a crowd of 20,000 awaited, packed into their Stradey fortress.

It could harely have

Stradey Park is the home of West Wales rugby

Search BBC News Online

GO

Advanced search options

Launch console for latest audio/video

low graphics version | feedback | help

- BBC RADIO NEWS
- BBC ONE TV NEWS
- WORLD NEWS SUMMARY
- BBC NEWS 24 BULLETIN
- PROGRAMMES GUIDE

See also:

- ➤ 20 Jul 00 | Wales 'Tinopolis' welcomes Millennium Eisteddfod
- 20 Jul 00 | Wales
 Plan Eisteddfod visit
 online
- 07 May 00 | Rugby Union Saints send Scarlets crashing
- 20 May 00 | Newyddion Y Sosban yn berwi drosodd
- 21 May 00 | Rugby Union Scarlets pay back All Whites
- 01 Jul 00 | Wales Rugby hero honoured by bards
- 20 Jul 00 | Wales
 Quinnell lands captaincy
 at Stradey BBC Sport >>

Internet links:

- Phil Bennett
- Llanelli RFC
- History of the Scarlets

The BBC is not responsible for the content of external internet sites

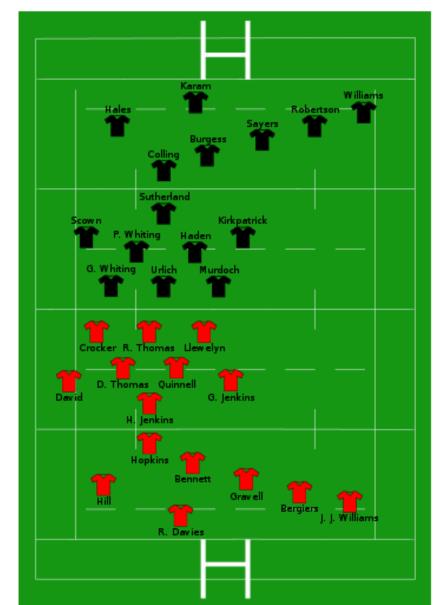
Top Wales stories now:

- Soap actor killed in holiday fall
- Wales leads UK bust firms league
- Husband jailed for rape attack
- Festival town prepares for euros

Llanelli

9–3

New Zealand


Try: Bergiers c

Report &

Pen: Karam

Con: Bennett

Pen: Hill

BBC HOMEPAGE | WORLD SERVICE | EDUCATION

B B C NEWS

Front Page **England** Northern **Ireland** Scotland Wales **UK Politics** Business Sci/Tech Health Education Entertainment Talking Point In Depth

AudioVideo

You are in: UK: Wales

Thursday, 20 July, 2000, 16:38 GMT 17:38 UK

World The day the Scarlets made history

The 1972 side which beat the All Blacks is still revered

Around Llanelli, people will still remind you of the day the Scarlets beat the mighty All Blacks.

Rugby was already the conversation topic of choice in the town where "scarlet fever" was a common condition. But the 9-3 victory for the club against one of the best nations in the world still remains a source of pride.

October 31, 1972, had been a miserable day around Stradey Park, but the pubs ran dry at night, as Carwyn James - just returned from coaching a successful British Lions trip to New Zealand - led his club to victory.

Captain Delme Thomas had given individual team talks to each player, bringing tears to the eyes of Phil Bennett. The squad was given a police escort to the ground, where a crowd of 20,000 awaited, packed into their Stradey fortress.

It could harely have

Stradey Park is the home of West Wales rugby

Search BBC News Online

low graphics version | feedback | help

GO Advanced search options Launch console for latest audio/video BBC RADIO NEWS BBC ONE TV NEWS

WORLD NEWS SUMMARY

HMI Comedy

internet sites

Top Wales stories now:

- · Soap actor killed in holiday fall
- Wales leads UK bust firms league
- Husband jailed for rape attack
- Festival town prepares for euros

Llanelli

Try: Bergiers c

Con: Bennett

Pen: Hill

New Zealand

Pen: Karam

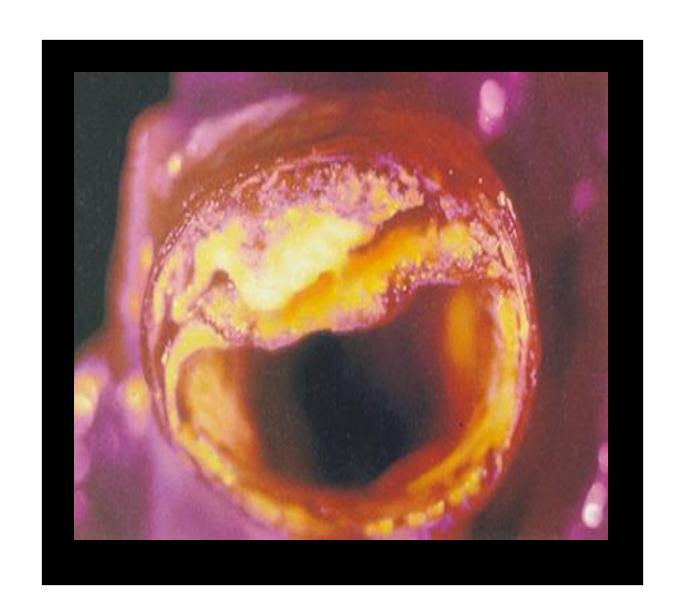
Report ₫

Williams Sutherland Kirkpatrick

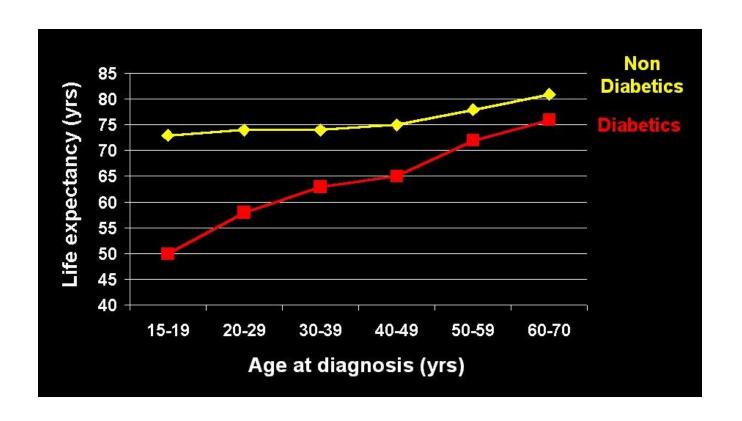
Preface

WHO Definition of Diabetes Mellitus

 'Diabetes mellitus is a state of chronic hyperglycaemia which may result from many environmental and genetic factors, often acting jointly'

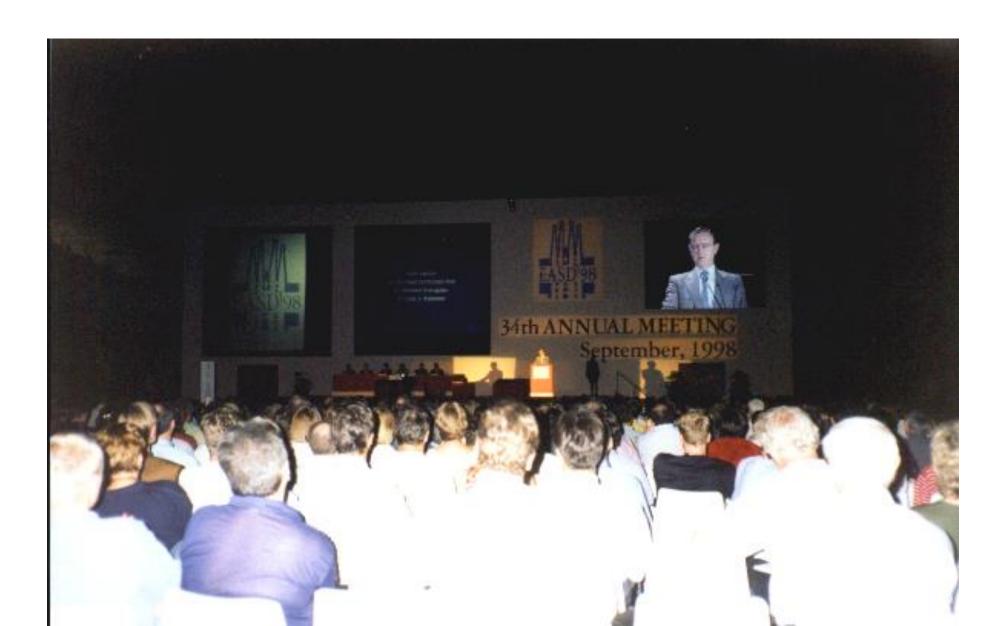

WHO Expert Committee on Diabetes Mellitus 1980

Re-definition of diabetes


 'Diabetes is a state of premature cardiovascular death which is associated with chronic hyperglycaemia and may also be associated with blindness and renal failure'

Miles Fisher, British Diabetes Association, Dublin, 1996

Diabetes and Macrovascular Disease


Life Expectancy and Diabetes

•'Adults with diabetes have an annual mortality of about 5.4%, double the rate for non-diabetic adults. Life expectancy is decreased by 5–10 years.'

How can we reduce this risk

UKPDS EASD Barcelona 1998 – I was there!

UKPDS EASD Barcelona 1998 – I was there!

Blood Pressure Control Study

In 1148 Type 2 diabetic patients a tight blood pressure control policy which achieved blood pressure of 144 / 82 mmHg gave reduced risk of:

•	24 % for any diabetes-related endpoint	p=0.0046
•	32% for diabetes-related deaths	p=0.019
•	44% for stroke	p=0.013
•	37% for microvascular disease	p=0.0092
•	56% for heart failure	p=0.0043
•	34% for retinopathy progression	p=0.0038
•	47% for deterioration of vision	p=0.0036

About us Browse content ▼ Become a reviewer Newsletter sign up

effect across these subgroups.

What did this study do?

This study included 123 large-scale randomised controlled trials with over 600,000 participants published between 1966 and 2015. All studies were required to have a minimum of 1000 patient-years of follow up in each group. Standard systematic review and meta-analysis methods were used. One medical database was searched and the reference lists of eligible studies were also hand searched to identify further relevant studies. The quality of the included studies was assessed: the majority of the studies (113) were judged to be of low risk of bias.

What did it find?

- Every 10 mm Hg systolic blood pressure reduction reduced the risk of major cardiovascular events by 20% (relative risk [RR] 0.80, 95% confidence interval [CI] 0.77 to 0.83), coronary heart disease by 17% (RR 0.83, 95% CI 0.78 to 0.88), stroke by 27% (RR 0.73, 95% CI 0.68 to 0.77), heart failure by 28% (RR 0.72, 95% CI 0.67 to 0.78), and death from all causes by 13% (RR 0.87, 95% CI 0.84 to 0.91).
- The size of these proportional reductions was broadly consistent across several major high-risk groups of patients (slightly less, but still significant, in diabetes and kidney disease), suggesting that blood pressure lowering provides broadly generalisable benefits.
- In stratified analyses, the proportional effects were similar in trials that included people with lower baseline systolic blood pressure (<130 mm Hg), and major cardiovascular events were clearly reduced in high-risk patients with various baseline comorbidities. Five different types of blood pressure lowering drugs were

About us Browse content ▼ Become a reviewer Newsletter sign up

Every 10 mm Hg systolic blood pressure reduction reduced the risk of pressure reduction reduced the 20% major cardiovascular events by 20%

95% CI 0.78 to 0.88), stroke by 27% (RR 0.73, 95% CI 0.68 to 0.77), heart failure by 28% (RR 0.72, 95% CI 0.67 to 0.78), and death from all causes by 13% (RR 0.87, 95% CI 0.84 to 0.91).

- The size of these proportional reductions was broadly consistent across several major high-risk groups of patients (slightly less, but still significant, in diabetes and kidney disease), suggesting that blood pressure lowering provides broadly generalisable benefits.
- In stratified analyses, the proportional effects were similar in trials that included people with lower baseline systolic blood pressure (<130 mm Hg), and major cardiovascular events were clearly reduced in high-risk patients with various baseline comorbidities. Five different types of blood pressure lowering drugs were

How can we reduce this risk

Control Blood Pressure

THE LANCET

This journal Global health Publish Clinical Multimedia About Journals Events

ARTICLES · Volume 344, Issue 8934, P1383-1389, November 19, 1994

Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S)

Scandinavian Simvastatin Survival Study Group 1,2

Affiliations & Notes ✓ Article Info ✓

55 Cite

Share ☐ Set Alert ☐ Get Rights ☐ Reprints

1994 – the 4S study

Abstract

Summary

Show Outline

Drug therapy for hypercholesterolaemia has remained controversial mainly because of insufficient clinical trial evidence for improved survival. The present trial was designed to evaluate the effect of cholesterol lowering with simvastatin on mortality and morbidity in patients with coronary heart disease (CHD). 4444 patients with angina pectoris or previous myocardial infarction and serum cholesterol 5·5-8·0 mmol/L on a lipid-lowering diet were randomised to double-blind treatment with simvastatin or placebo.

Over the 5.4 years median follow-up period, simvastatin produced mean changes in total cholesterol, low-density-lipoprotein cholesterol, and high-density-lipoprotein cholesterol of -25%, -35%, and +8%, respectively, with few adverse effects. 256 patients (12%) in the placebo group died, compared with 182 (8%) in the simvastatin group. The relative risk of death in the simvastatin group was 0.70 (95% Cl 0.58-0.85, p=0.0003). The 6-year probabilities of survival in the placebo and simvastatin groups were 87.6% and 91.3%, respectively. There were 189 coronary deaths in the placebo group and 111 in the simvastatin group (relative risk 0.58, 95% Cl 0.46-0.73), while noncardiovascular causes accounted for 49 and 46 deaths, respectively. 622 patients (28%) in the placebo group and 431 (19%) in the simvastatin group had one or more major coronary events. The relative risk was 0.66 (95% Cl 0.59-0.75, p<0.00001), and the respective probabilities of escaping such events were 70.5% and 79.6%. This risk was also significantly reduced in subgroups consisting of women and patients of both sexes aged 60 or more. Other benefits of treatment included a 37% reduction (p<0.00001) in the risk of undergoing myocardial revascularisation procedures.

THE LANCET

Global health This journal Journals Publish Clinical Multimedia Events About

FAST TRACK - ARTICLES · Volume 360, Issue 9326, P7-22, July 06, 2002

MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebocontrolled trial

Heart Protection Study Collaborative Group

Article Info ✓ Linked Articles (1) ✓

Summary

Background

Show Outline 👋

Throughout the usual LDL cholesterol range in Western populations, lower blood concentrations are associated with lower cardiovascular disease risk. In such populations, therefore, reducing LDL cholesterol may reduce the development of vascular disease, largely irrespective of initial cholesterol concentrations.

Methods

20 536 UK adults (aged 40–80 years) with coronary disease, other occlusive arterial disease, or diabetes were randomly allocated to receive 40 mg simvastatin daily (average compliance: 85%) or matching placebo (average non-study statin use: 17%). Analyses are of the first occurrence of particular events, and compare all simvastatin-allocated versus all placebo-allocated participants. These "intention-to-treat" comparisons assess the effects of about two-thirds (85% minus 17%) taking a statin during the scheduled 5-year treatment period, which yielded an average difference in LDL cholesterol of 1.0 mmol/L (about two-thirds of the effect of actual use of 40 mg simvastatin daily). Primary outcomes were mortality (for overall analyses) and fatal or non-fatal vascular events (for subcategory analyses), with subsidiary assessments of cancer and of other major morbidity.

 The Heart Protection Study (HPS) demonstrated that statin therapy with simvastatin significantly reduces the risk of major vascular events (heart attacks, strokes, and revascularization procedures) and all-cause mortality in high-risk individuals, including those with existing coronary heart disease, diabetes, and stroke patients

Home
Current issue
Instructions
Submit article

► Indian J Pharmacol. 2012 Mar-Apr;44(2):261–263. doi: 10.4103/0253-7613.93864 🖸

A comparative effect of atorvastatin with other statins in patients of hyperlipidemia

M Alvin Jose 1,™, S Anandkumar 1, MP Narmadha 1, M Sandeep 1

► Author information ► Article notes ► Copyright and License information

PMCID: PMC3326925 PMID: 22529488

Abstract

Objective:

The objective of the study was to evaluate the safety and efficacy of atorvastatin compared with simvastatin and pravastatin in patients of hyperlipidemia.

Materials and Methods:

This was a randomized, parallel group, open-label study conducted at KG hospital, Coimbatore, Tamilnadu, India. Twenty hyperlipidemia patients each taking atorvastatin 20

statin therapy for lipid profile. The liver enzyme levels (SGOT, SGPT, ALP), albumin, bilirubin, protein and biochemical infraction parameters (Creatine Kinase, Creatine Kinase - Myocardial Band) after 5th month of treatment with statins were also reviewed.

Results:

The results showed that atorvastatin significantly reduced the lipid levels (LDL-C, TC, TG, VLDL) when compared to simvastatin and pravastatin after 3rd and 5th month of treatment. Atorvastatin increased the HDL-C levels significantly when compared to simvastatin and pravastatin after 5 months of treatment. Atorvastatin also significantly reduced the CK levels when compared to pravastatin but no increase in liver enzyme levels was observed.

Conclusion:

The study showed that atorvastatin is more effective when compared to simvastatin and pravastatin in patients with hyperlipidemia.

KEY WORDS: Creatine kinase, creatine kinase - myocardial band, pravastatin, simvastatin

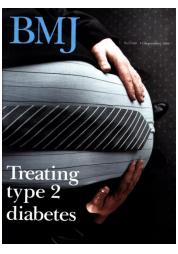
How can we reduce this risk

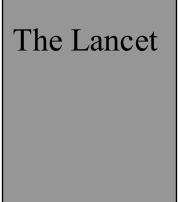
- Control Blood Pressure
- Use a statin in highest tolerated dose

I know cos I was there!

PROactive. EASD Athens, September 12, 2005

Spice Girls
Same stage
Barcelona
1998


Spice Girls
Same stage
Barcelona
1998


I know 'cos I was there!

UKPDS, Barcelona, 1998

The Lancet

Glucose Control Study Summary

The intensive glucose control policy maintained a lower HbA_{1c} by mean 0.9 % over a median follow up of 10 years from diagnosis of type 2 diabetes with reduction in risk of:

12%	for any diabetes related endpoint	p=0.029
25%	for microvascular endpoints	p=0.0099
16%	for myocardial infarction	p=0.052
24%	for cataract extraction	p=0.046
21%	for retinopathy at twelve years	p=0.015
33%	for albuminuria at twelve years	p=0.000054

Glucose Control Study Summary

The intensive glucose control policy maintained a lower HbA_{1c} by mean 0.9 % over a median follow up of 10 years from diagnosis of type 2 diabetes with reduction in risk of:

12%	for any diabetes related endpoint	p=0.029
25%	for microvascular endpoints	p=0.0099
16% 24%	for myocardial infarction for cataract extraction	p=0.052 p=0.046
21%	for retinopathy at twelve years	p=0.015
33%	for albuminuria at twelve years	p=0.000054

Metformin in Overweight Patients

compared with conventional policy

32% risk reduction in any diabetes-related endpoints p=0.0023 42% risk reduction in diabetes-related deaths p=0.017 36% risk reduction in all cause mortality p=0.011 39% risk reduction in myocardial infarction p=0.01

Metformin - UKPDS

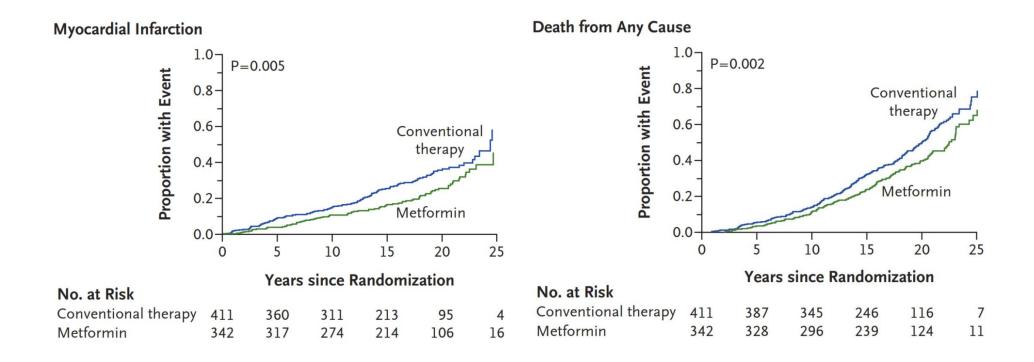


Figure 1a Figure 1b

The proportions of patients in the UKPDS (United Kingdom Prospective Diabetes Study) who had myocardial infarction (Figure 1a) and death from any cause (Figure 1b) for the metformin group versus the conventional therapy group. Kaplan-Meier plots cumulative incidence and log-rank P values are shown at 5-year intervals during a 25 year period from the start of the interventional trial.

Holman RR et al, N Engl J Med. 2008;359(15):1577-89

Metformin - UKPDS

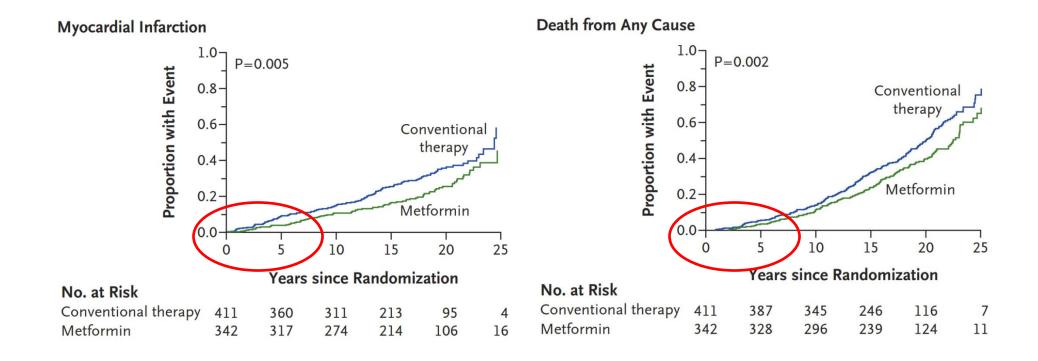



Figure 1a Figure 1b

The proportions of patients in the UKPDS (United Kingdom Prospective Diabetes Study) who had myocardial infarction (Figure 1a) and death from any cause (Figure 1b) for the metformin group versus the conventional therapy group. Kaplan-Meier plots cumulative incidence and log-rank P values are shown at 5-year intervals during a 25 year period from the start of the interventional trial.

Holman RR et al, N Engl J Med. 2008;359(15):1577-89

How can we reduce this risk

- Control Blood Pressure
- Use a statin in highest tolerated dose
- Use metformin in all patients if tolerated

I know cos I was there!

PROactive Study

PROspective PioglitAzone Clinical Trial In MacroVascular Events

A Macrovascular Outcome Study in Type 2 Diabetic Patients Comparing Pioglitazone with Placebo in Addition to Existing Therapy

European Association for the Study of Diabetes

Athens 2005

5602 patients screened

5238 patients randomised

2605 assigned to pioglitazone
All patients commenced study
medication

2633 assigned to placebo
All patients commenced study
medication

427 patients permanently ceased study medication prior to end of study / death

235 - due to adverse event

149 - withdrew consent to treatment

43 - other reasons

438 patients permanently ceased study medication prior to end of study / death

202 - due to adverse event

167 - withdrew consent to treatment

69 - other reasons

2427 Had final assessment

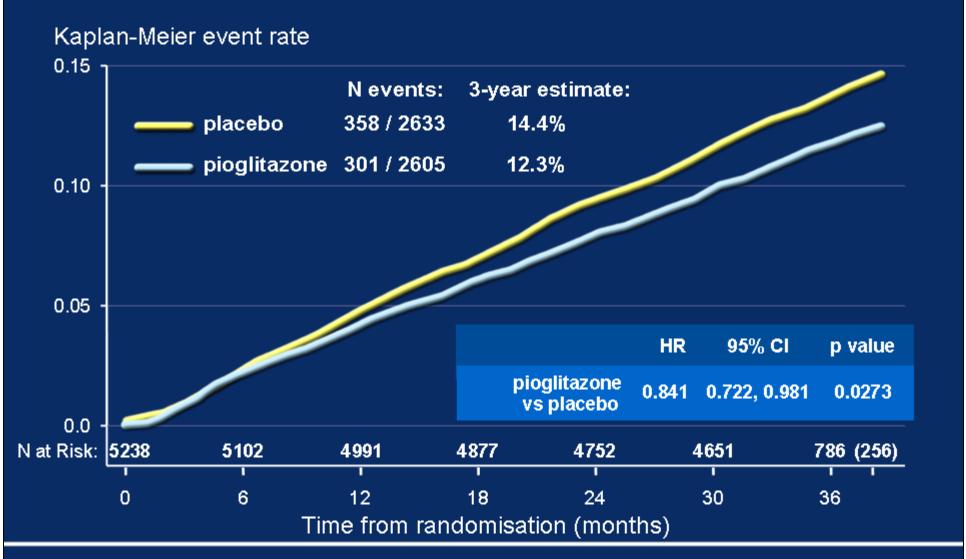
177 Died

1 Lost to follow-up

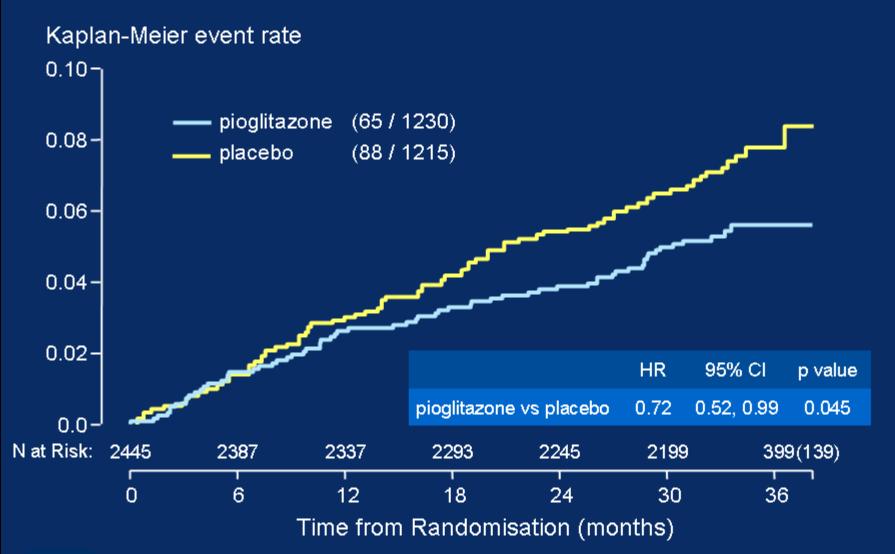
2446 Had final assessment

186 **Died**

1 Lost to follow-up

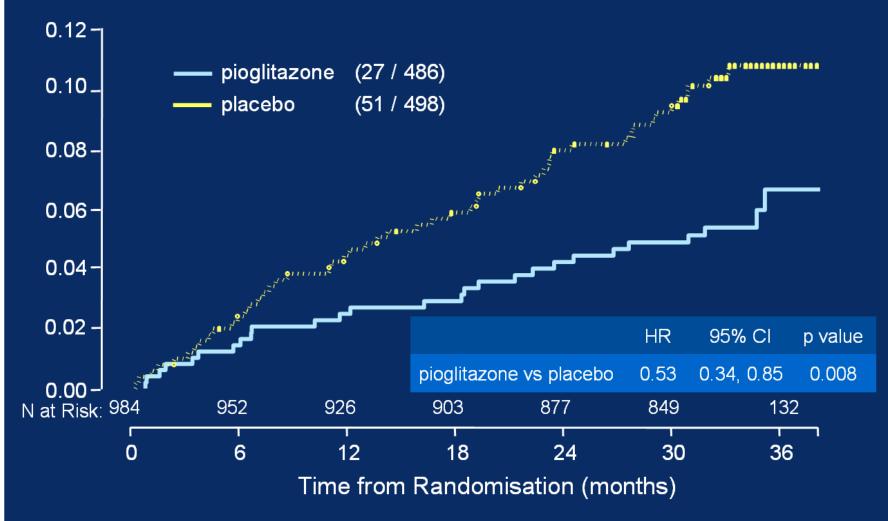

5238 patients included in Intention-to-Treat Analysis

CV Outcome Studies - 3 point MACE


- Death
- Myocardial infarction
- Stroke

MACE = Major Adverse Cardiovascular event

Time to Death, MI (Excluding Silent) or Stroke


Time to Fatal/Non-fatal MI (excluding silent MI)

proactive-results.com

Time to Fatal or Non-Fatal Stroke in Patients with Previous Stroke

Wilcox RG et al, Stroke 2007; 38: 865-873

Effect of Pioglitazone Compared With Glimepiride on Carotid Intima-Media Thickness in Type 2 Diabetes

A Randomized Trial

Theodore Mazzone, MD Peter M. Meyer, PhD Steven B. Feinstein, MD Michael H. Davidson, MD George T. Kondos, MD Ralph B. D'Agostino, Sr, PhD Alfonso Perez, MD Jean-Claude Provost, MD

Steven M. Haffner, MD

ATIENTS WITH TYPE 2 DIABETES mellitus (DM) have a marked increase in the risk of myocardial infarction (MI), and a substantially worse prognosis after MI compared with patients without diabetes. 1-3 In recent years, it has become apparent that optimal control of blood pressure and low-density lipoprotein cholesterol (LDL-C) level can substantially reduce excess cardiovascular risk in patients with diabetes.46 However, even with optimal control of these potent cardiovascular risk factors, incremental risk for cardiovascular events remains high compared with individuals without diabetes.^{2,3,6} New approaches are, therefore, needed to further reduce cardiovascular risk in patients with dia-

Emerging evidence suggests that thiazolidinediones could be useful for reducing cardiovascular risk. In isolated vessel-wall cells, troglitazone, pioglitazone, and rosiglitazone have been

Context Carotid artery intima-media thickness (CIMT) is a marker of coronary atherosclerosis and independently predicts cardiovascular events, which are increased in type 2 diabetes mellitus (DM). While studies of relatively short duration have suggested that thiazolidinediones such as pioglitazone might reduce progression of CIMT in persons with diabetes, the results of longer studies have been less clear.

Objective To evaluate the effect of pioglitazone vs glimepiride on changes in CIMT of the common carotid artery in patients with type 2 DM

Design, Setting, and Participants Randomized, double-blind, comparatorcontrolled, multicenter trial in patients with type 2 DM conducted at 28 clinical sites in the multiracial/ethnic Chicago metropolitan area between October 2003 and May 2006. The treatment period was 72 weeks (1-week follow-up), CIMT images were captured by a single ultrasonographer at 1 center and read by a single treatment-blinded reader using automated edge-detection technology. Participants were 462 adults (mean age, 60 [SD, 8.1] years; mean body mass index, 32 [SD, 5.1]) with type 2 DM (mean duration, 7.7 [SD, 7.2] years; mean glycosylated hemoglobin [HbA12] value, 7.4% [SD, 1.0%]), either newly diagnosed or currently treated with diet and exercise, sulfonylurea, metformin, insulin, or a combination thereof.

Interventions Pioglitazone hydrochloride (15-45 mg/d) or glimepiride (1-4 mg/d) as an active comparator.

Main Outcome Measure Absolute change from baseline to final visit in mean posterior-wall CIMT of the left and right common carotid arteries.

Results Mean change in CIMT was less with pioglitazone vs glimepiride at all time points (weeks 24, 48, 72). At week 72, the primary end point of progression of mean CIMT was less with pioglitazone vs glimepiride (-0.001 mm vs +0.012 mm, respectively; difference, -0.013 mm; 95% confidence interval, -0.024 to -0.002; P=.02). Pioglitazone also slowed progression of maximum CIMT compared with glimepiride (0.002 mm vs 0.026 mm, respectively, at 72 weeks; difference, -0.024 mm; 95% confidence interval, -0.042 to -0.006; P = .008). The beneficial effect of pioglitazone on mean CIMT was similar across prespecified subgroups based on age, sex, systolic blood pressure, duration of DM, body mass index, HbA1, value, and statin use.

Conclusion Over an 18-month treatment period in patients with type 2 DM, pioglitazone slowed progression of CIMT compared with glimepiride.

Trial Registration clinicaltrials.gov Identifier: NCT00225264

JAMA. 2006;296:2572-2581

mans, these agents have been shown to have beneficial effects on systemic inshown to modulate gene expression in flammatory and coagulation markers. a manner that would be predicted to be lipoprotein profile, and endothelial cell atheroprotective in vivo. 7.8 In hu-function. 9.12 Some of these beneficial ef-

Author Affiliations are listed at the end of this

Corresponding Author: Theodore Mazzone, MD, University of Illinois College of Medicine, Section of Endocrino logy, Diabetes and Metabolism, 1819 W Polk St, 612 CMW MC 797, Chicago, IL 60612 (tmazzone

2572 JAMA, December 6, 2006-Vol 296, No. 21 (Reprinted)

©2006 American Medical Association. All rights reserved.

Pioglitazone slowed progression of carotid artery intima-media thickness (a marker of coronary atherosclerosis which independently predicts cardiovascular events) compared with glimepiride

ORIGINAL CONTRIBUTION JAMA-EXPRESS

Comparison of Pioglitazone vs Glimepiride on Progression of Coronary Atherosclerosis in Patients With Type 2 Diabetes

The PERISCOPE Randomized Controlled Trial

Steven E. Nissen, MD
Stephen J. Nicholls, MBBS, PhD
Kathy Wolski, MPH
Richard Nesto, MD
Stuart Kupfer, MD
Alfonso Perez, MD
Horacio Jure, MD
Robert De Larochellière, MD
Cezar S. Staniloae, MD
Kreton Mavromatis, MD
Jacqueline Saw, MD
Bo Hu, PhD
A. Michael Lincoff, MD
E. Murat Tuzcu, MD
for the PERISCOPE Investigators
▲ LTHOUGH MANAGEMENT OF

glucose levels represents one of the principal treatment goals of diabetes therapy, it has been difficult to demonstrate a favorable effect of improved glycemic control on the macrovascular complications of this disease.1,2 No antidiabetic regimen has demonstrated the ability to reduce the progression of coronary atherosclerosis. Accordingly, there is little evidence to support a preference of one class of glucoselowering medication over any other as a means to reduce atherosclerotic disease burden.3 Sulfonvlureas have been available for decades, lower blood glucose by acting as insulin secretagogues, and represent one of the most

For editorial comment see p 1603.

Context No antidiabetic regimen has demonstrated the ability to reduce progression of coronary atherosclerosis. Commonly used oral glucose-lowering agents include sulfonylureas, which are insulin secretagogues, and thiazolidinediones, which are insulin sensitizers.

Objective To compare the effects of an insulin sensitizer, ploglitazone, with an insulin secretagogue, glimepiride, on the progression of coronary atherosclerosis in patients with type 2 diabetes.

Design, Setting, and Participants Double-blind, randomized, multicenter trial at 97 academic and community hospitals in North and South America (enrollment August 2003-March 2006) in 543 patients with coronary disease and type 2 diabetes.

Interventions A total of 543 patients underwent coronary intravascular ultrasonography and were randomized to receive glimepiride, 1 to 4 mg, or pioglitazone, 15 to 45 mg, for 18 months with titration to maximum dosage, if tolerated. Atherosclerosis progression was measured by repeat intravascular ultrasonography examination in 360 patients at study completion.

Main Outcome Measure Change in percent atheroma volume (PAV) from baseline to study completion.

Results Least squares mean PAV increased 0.73%, 95 % CI, 0.33%, to 1.12%) with glimepitide and decreased 0.16% (95% CI, -0.57% to 0.25%) with ploglitazone (P=.002). An atternative analysts imputing values for noncompleters based on baseline characteristics showed an increase in PAV of 0.64% (95% CI, 0.23% to 1.05%) for glimepitide and a decrease of 0.06% (-0.47% to 0.35%) for ploglitazone (between-group P=.02). Mean (SD) baseline HbAt_{1c} levels were 7.4% (1.0%) in both groups and declined during treatment an average 0.55% (95% CI, -0.68% to -0.42%) with ploglitazone and 0.36% (95% CI, -0.44%) with glimepitide, high-density lipoprotein levels increased 5.7 mg/dL (95% CI, 4.4 to 7.0 mg/dL; 16.0%) vs 0.9 mg/dL (95% CI, -0.3 to 2.1 mg/dL; 4.1%), and median triglyceride levels decreased 16.3 mg/dL (95% CI, -0.7.7 to -1.10 mg/dL; 15.3%) vs an increase of 3.3 mg/dL (95% CI, -10.7 to 11.7 mg/dL, 0.6%) (P<.001 for both comparisons). Median fasting insulin levels decreased with ploglitazone and increased with glimepitide (P<.001). Hypoglycemial was more common in the glimepiride group and edema, fractures, and decreased hemoglobin levels occurred more frequently in the ploglitazone group.

Conclusion In patients with type 2 diabetes and coronary artery disease, treatment with plogitazone resulted in a significantly lower rate of progression of coronary atherosclerosis compared with glimepiride.

Trial Registration clinicaltrials.gov Identifier: NCT00225277

JAMA. 2008:299(13):1561-1573

www.jama.com

commonly-used classes of antidiabetic therapy. Thiazolidinediones (TZDs) are a relatively new class of antidiabetic agents that reduce glucose pri-

Author Affiliations and a List of the PERISCOPE Investigators appear at the end of this article. Corresponding Author: Steven E. Nissen, MD, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH

©2008 American Medical Association. All rights reserved.

(Reprinted) JAMA, April 2, 2008—Vol 299, No. 13 1561

Clinic Foundation, 9500 Euclid Ave, Cleveland, tcose pri-44195 (nissens@ccf.org).

Pioglitazone treated patients showed a significantly lower rate of progression of coronary atherosclerosis, as assessed using intravascular ultrasonography, compared to glimepiride treated patients

Metanalysis of randomized controlled trials

Pioglitazone and Risk of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus A Meta-analysis of Randomized Trials

A. Michael Lincoff, MD

Kathy Wolski, MPH Stephen J. Nicholls, MBBS, PhD

Steven E. Nissen, MD

nists of the peroxisome prolifglycemic control, the thiazolidinewith type 2 diabetes mellitus. Although these agents can cause peripheral edema and congestive heart failure,3,4 their beneficial effects on glucose diones might reduce ischemic cardio-

However, a recent meta-analysis of placebo or active comparators in more than 27 000 patients with diabetes suggested that treatment with rosiglitazone was associated with an increased risk of myocardial infarction and cardiovascular death.5 Furthermore, a previous analysis had demonstrated that muraelitazar, an investigational dual agonist of both α- and γ-isoforms of

1180 JAMA, September 12, 2007-Vol 298, No. 10 (Reprinted)

See also pp 1189 and 1216.

Context Pioglitazone is widely used for glycemic control in patients with type 2 diabetes mellitus, but evidence is mixed regarding the influence of medications of this class on cardiovascular outcomes.

Objective To systematically evaluate the effect of pioglitazone on ischemic cardio-

Data Sources and Study Selection A database containing individual patientlevel time-to-event data collected during pioglitazone clinical trials was transferred from eration-activated receptor γ the drug's manufacturer for independent analysis. Trials were included if they were (PPAR-y), which regulate tran-randomized, double-blinded, and controlled with placebo or active comparator.

scription of a variety of genes encod- Data Extraction The primary outcome was a composite of death, myocardial ining proteins involved in glucose ho-farction, or stroke. Secondary outcome measures included the incidence of serious heart meostasis and lipid metabolism. 1.2 By failure. A fixed-effects approach was used to combine the estimates across the duravirtue of their efficacy in achieving tion strata and statistical heterogeneity across all the trials was tested with the I2 sta-

diones pioglitazone and rosiglitazone Data Synthesis A total of 19 trials enrolling 16390 patients were analyzed. are both widely used to treat patients Study drug treatment duration ranged from 4 months to 3.5 years. Death, myocardial infarction, or stroke occurred in 375 of 8554 patients (4.4%) receiving pioglitazone and 450 of 7836 patients (5.7%) receiving control therapy (hazard ratio [HR], 0.82; 95% confidence interval [CI], 0.72-0.94; P=.005). Progressive separation of time-to-event curves became apparent after approximately 1 year of therapy. Individual components of the primary end point were all reduced by a metabolism and insulin sensitivity have similar magnitude with pioglitazone treatment, with HRs ranging from 0.80 to 0.92. stimulated interest that thiazolidine- Serious heart failure was reported in 200 (2.3%) of the pioglitazone-treated patients and 139 (1.8%) of the control patients (HR, 1.41; 95% CI, 1.14-1.76; vascular complications of diabetes P = .002). The magnitude and direction of the favorable effect of pioglitazone on ischemic events and unfavorable effect on heart failure was homogeneous across trials of different durations, for different comparators, and for patients with or with-42 trials comparing rosiglitazone with out established vascular disease. There was no evidence of heterogeneity across the trials for either end point ($l^2=0\%$; P=.87 for the composite end point and $l^2=0\%$; P=.97 for heart failure).

> Conclusions Pioglitazone is associated with a significantly lower risk of death, myocardial infarction, or stroke among a diverse population of patients with diabetes. Serious heart failure is increased by pioglitazone, although without an associated increase in mortality

JAMA, 2007:298(10):1180-1188

PPAR, was also associated with an excess incidence of death and major car- Corresponding Author: A. Michael Lincoff, MD, diovascular events in patients with dia-

Author Affiliations: Department of Cardiovascular Medicine Cleveland Clinic Cleveland Ohio Department of Cardiovascular Medicine. Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 (lincofa

©2007 American Medical Association. All rights reserved.

Pioglitazone receiving patients showed a significant reduction in death, myocardial infarction and stroke compared to patients receiving control therapy in meta-analysis of 19 randomised controlled trials (HR 0.82, CI 0.72 – 0.94, p=0.005)

2016 – The IRIS Trial

Pioglitazone in insulin resistant patients without diabetes

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Pioglitazone after Ischemic Stroke or Transient Ischemic Attack

W.N. Kernan, C.M. Viscoli, K.L. Furie, L.H. Young, S.E. Inzucchi, M. Gorman, P.D. Guarino, A.M. Lovejoy, P.N. Peduzzi, R. Conwit, L.M. Brass, * G.G. Schwartz, H.P. Adams, Jr., L. Berger, A. Carolei, W. Clark, B. Coull, G.A. Ford, D. Kleindorfer, J.R. O'Leary, M.W. Parsons, P. Ringleb, S. Sen, J.D. Spence, D. Tanne, D. Wang, and T.R. Winder, for the IRIS Trial Investigators†

ABSTRACT

BACKGROUND

Patients with ischemic stroke or transient ischemic attack (TIA) are at increased risk for future cardiovascular events despite current preventive therapies. The identification of insulin resistance as a risk factor for stroke and myocardial infarction raised the possibility that pioglitazone, which improves insulin sensitivity, might Haven, CT 06519, or at walter.kernan@ benefit patients with cerebrovascular disease.

In this multicenter, double-blind trial, we randomly assigned 3876 patients who had had a recent ischemic stroke or TIA to receive either pioglitazone (target dose, 45 mg daily) or placebo. Eligible patients did not have diabetes but were found to have insulin resistance on the basis of a score of more than 3.0 on the homeostasis model assessment of insulin resistance (HOMA-IR) index. The primary outcome 2016, at NEJM.org. was fatal or nonfatal stroke or myocardial infarction.

By 4.8 years, a primary outcome had occurred in 175 of 1939 patients (9.0%) in the pioglitazone group and in 228 of 1937 (11.8%) in the placebo group (hazard ratio in the pioglitazone group, 0.76; 95% confidence interval [CI], 0.62 to 0.93; P=0.007). Diabetes developed in 73 patients (3.8%) and 149 patients (7.7%), respectively (hazard ratio, 0.48; 95% CI, 0.33 to 0.69; P<0.001). There was no significant between group difference in all-cause mortality (hazard ratio, 0.93; 95% CI, 0.73 to 1.17; P=0.52). Proglitazone was associated with a greater frequency of weight gain exceeding 4.5 kg than was placebo (52.2% vs. 33.7%, P<0.001), edema (35.6% vs. 24.9%, P<0.001), and bone fracture requiring surgery or hospitalization (5.1% vs. 3.2%, P=0.003).

CONCLUSIONS

In this trial involving patients without diabetes who had insulin resistance along with a recent history of ischemic stroke or TIA, the risk of stroke or myocardial infarction was lower among patients who received pioglitazone than among those who received placebo. Pioglitazone was also associated with a lower risk of diabetes but with higher risks of weight gain, edema, and fracture. (Funded by the National Institute of Neurological Disorders and Stroke; Clinical Trials.gov number, NCT00091949.)

The authors' full names, academic degrees, and affiliations are listed in the Appendix. Address reprint requests to Dr. Kernan at 2 Church St. S., Suite 515, New

†A complete list of the Insulin Resistance ntervention after Stroke (IRIS) trial investigators is provided in the Supplementary Appendix, available at NEJM.org.

DOI: 10.1056/NEJMoa1506930 Copyright © 2016 Massachusetts Medical Society.

In this trial involving patients without diabetes who had insulin resistance along with a recent history of ischemic stroke or TIA, the risk of stroke or myocardial infarction was reduced by 24% in patients who received pioglitazone versus those who received placebo

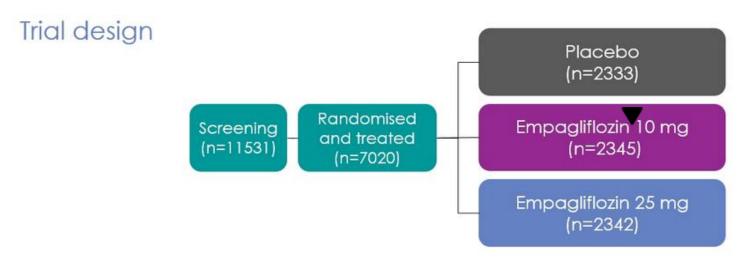
Summary

• The accumulated evidence suggests that pioglitazone reduces cardiovascular death, myocardial infarction and stroke by slowing down, or even reversing, the atherosclerotic process

How can we reduce this risk

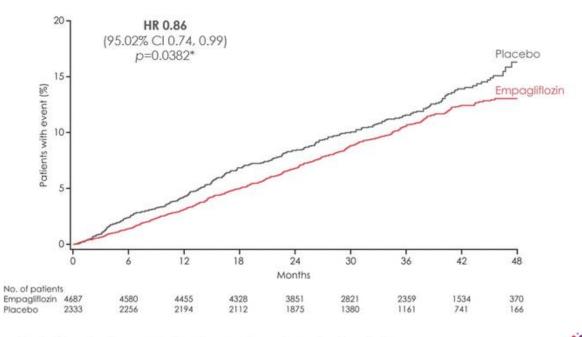
- Control Blood Pressure
- Use a statin in highest tolerated dose
- Use metformin in all patients if tolerated
- Use pioglitazone to slow or reverse the atherosclerosis

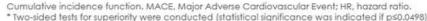
I know cos I was there!



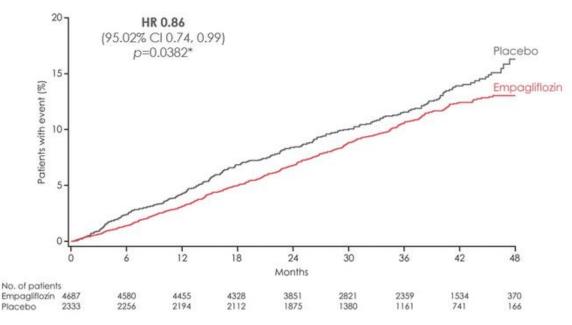
Key inclusion and exclusion criteria

- Key inclusion criteria
 - Adults with type 2 diabetes
 - BMI ≤45 kg/m²
 - HbAic /-10%*
 - Established cardiovascular disease
 - Prior myocardial infarction, coronary artery disease, stroke, unstable angina or occlusive peripheral arterial disease
- Key exclusion criteria
 - eGFR <30 mL/min/1.73m² (MDRD)

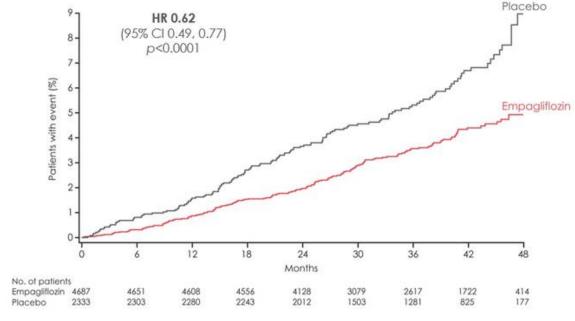




- Study medication was given in addition to standard of care
 - Glucose-lowering therapy was to remain unchanged for first 12 weeks
- Treatment assignment double masked
- The trial was to continue until at least 691 patients experienced an adjudicated primary outcome event

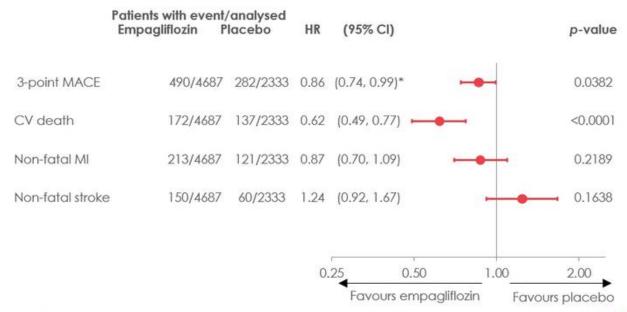

Primary outcome: 3-point MACE

Primary outcome: 3-point MACE



Cumulative incidence function, MACE, Major Adverse Cardiovascular Event; HR, hazard ratio.

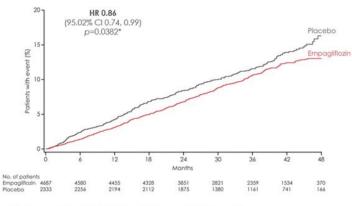
* Two-sided tests for superiority were conducted (statistical significance was indicated if p<0.0498)


CV death

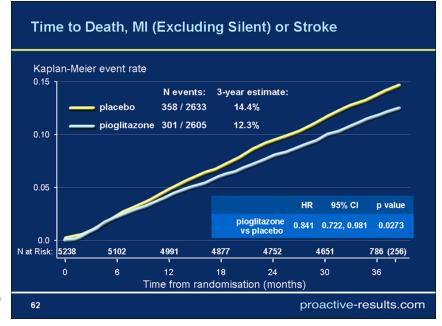
THE EMPA-REG OUTCOME STUDY

CV death, MI and stroke

Compare and contrast

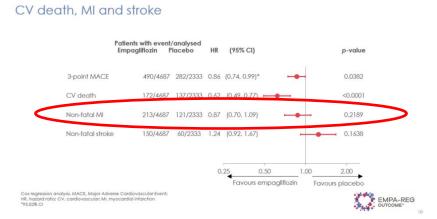

EMPA-REG PROactive

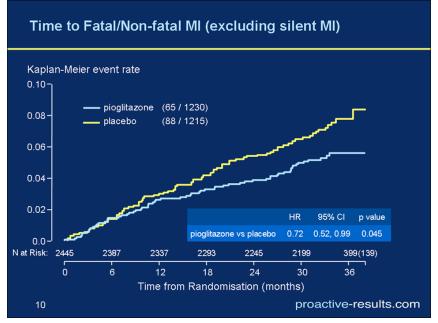
3 point MACE


EMPA-REG

PROactive

Primary outcome: 3-point MACE

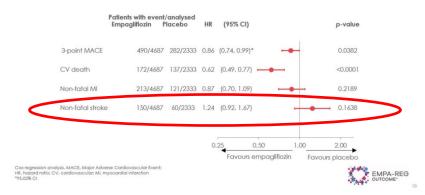

Cumulative incidence function. MACE, Major Adverse Cardiovascular Event; HR, hazard ratio.

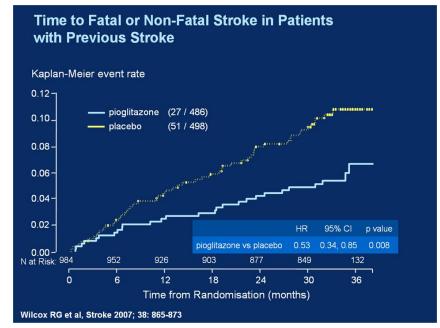

* Two-sided tests for superiority were conducted (statistical significance was indicated if p<0.0498)

Myocardial Infarction

EMPA-REG

PROactive



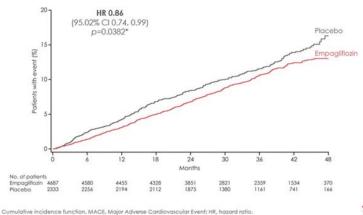

Stroke

EMPA-REG

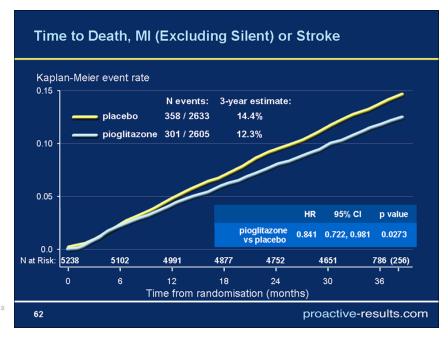
CV death, MI and stroke

PROactive

Empagliflozin - no impact

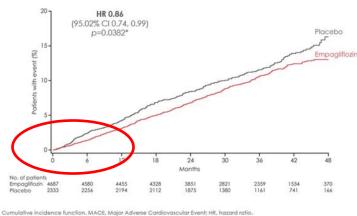

Pioglitazone - impact

Separation of the graphs

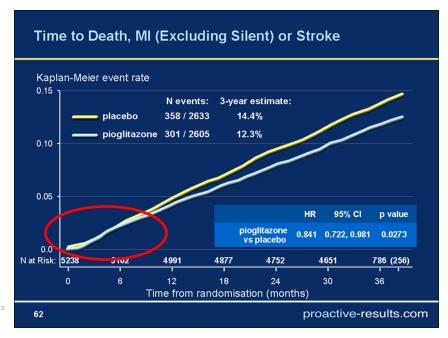

EMPA-REG

PROactive

Primary outcome: 3-point MACE

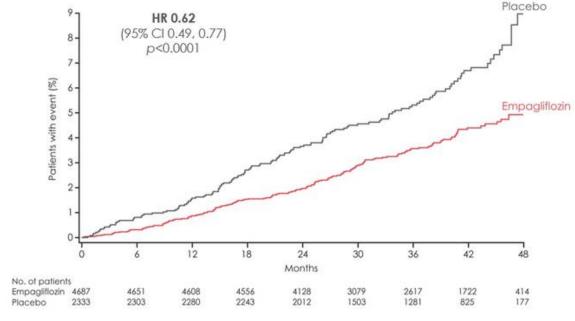

* Two-sided tests for superiority were conducted (statistical significance was indicated if p<0.0498)

Separation of the graphs


EMPA-REG

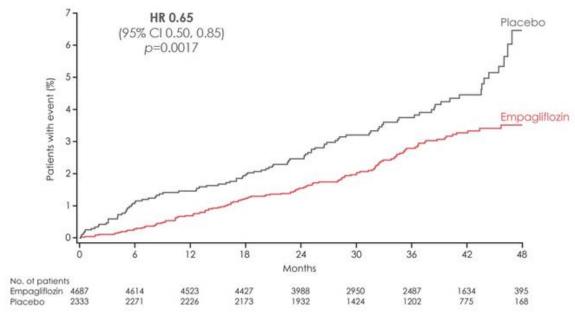
PROactive

Primary outcome: 3-point MACE



* Two-sided tests for superiority were conducted (statistical significance was indicated if p<0.0498)

THE EMPA-REG OUTCOME STUDY

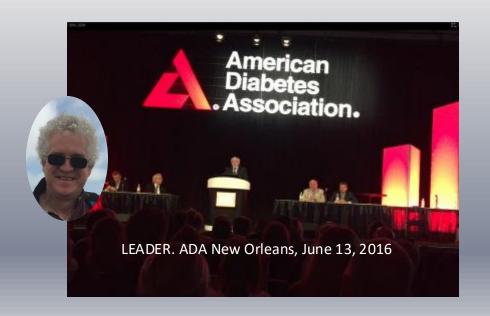

CV death


THE EMPA-REG OUTCOME STUDY

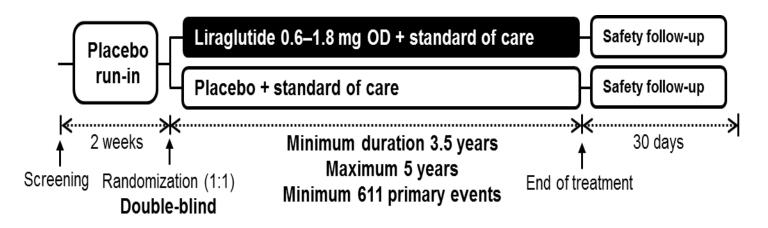
Hospitalisation for heart failure

Summary

- The accumulated evidence suggests that pioglitazone reduces cardiovascular death, myocardial infarction and stroke by slowing down, or even reversing, the atherosclerotic process
- The EMPA-REG OUTCOME™ trial suggests that empagliflozin reduces cardiovascular death but does not reduce either stroke or myocardial infarction, signifying a different mechanism to that of pioglitazone, more hemodynamic in nature



I know cos I was there!



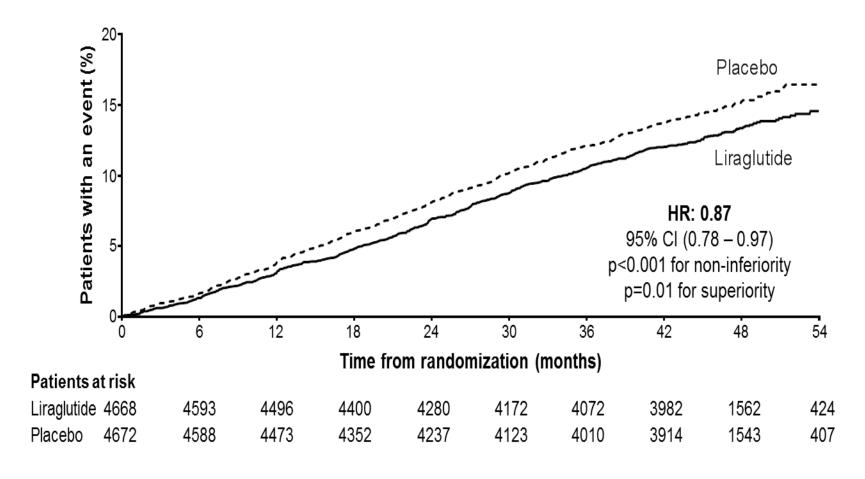
LEADER: Study design

Key inclusion criteria

- T2DM, HbA_{1c} ≥7.0%
- Antidiabetic drug naïve; OADs and/or basal/premix insulin
- Age ≥50 years and established CV disease or chronic renal failure

01

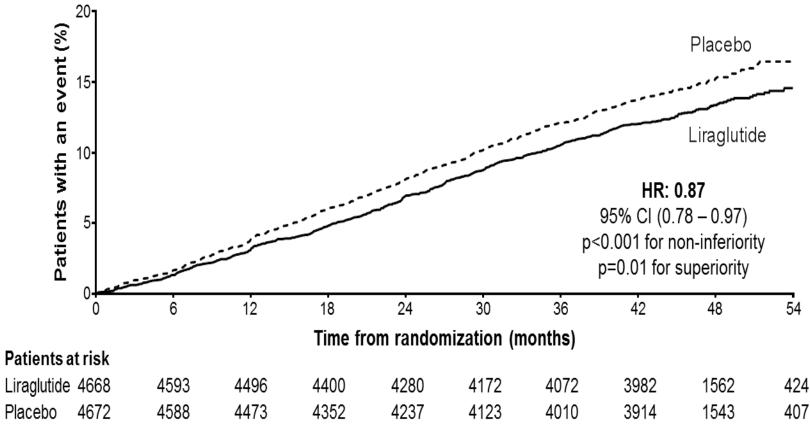
Age ≥60 years and risk factors for CV disease


Key exclusion criteria

- T1DM
- Use of GLP-1RAs, DPP-4i, pramlintide, or rapid-acting insulin
- Familial or personal history of MEN-2 or MTC

Primary outcome

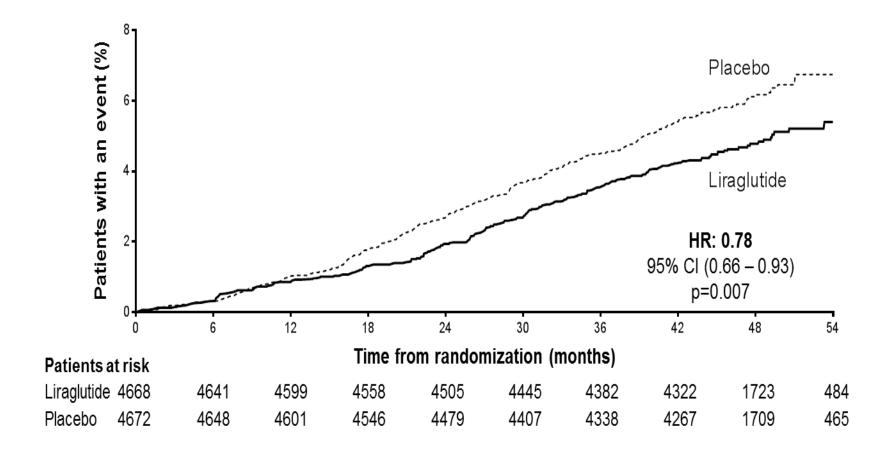
CV death, non-fatal myocardial infarction, or non-fatal stroke



The primary composite outcome in the time-to-event analysis was the first occurrence of death from cardiovascular causes, non-fatal myocardial infarction, or non-fatal stroke. The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular; HR: hazard ratio.

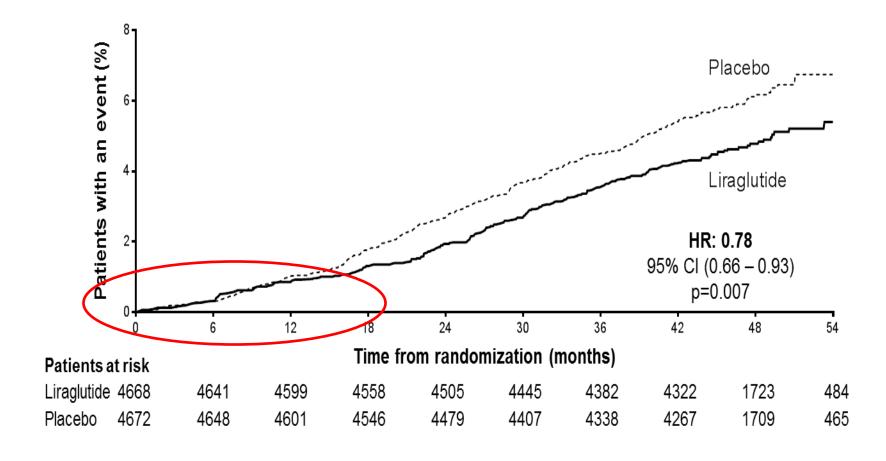
Primary outcome

CV death, non-fatal myocardial infarction, or non-fatal stroke



The primary composite outcome in the time-to-event analysis was the first occurrence of death from cardiovascular causes, non-fatal myocardial infarction, or non-fatal stroke. The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular; HR: hazard ratio.

CV death



The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months.

CI: confidence interval; CV: cardiovascular; HR: hazard ratio.

CV death

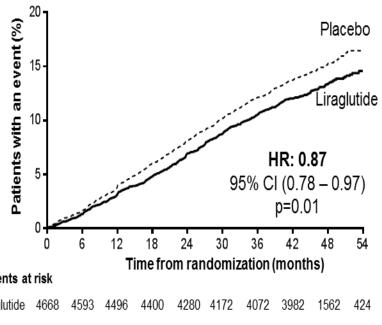
The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months.

CI: confidence interval; CV: cardiovascular; HR: hazard ratio.

Empagliflozin and Liraglutide

EMPA-REG OUTCOME

CV death, non-fatal MI, or non-fatal stroke


event (%) Placebo a Empagliflozin Patients with HR: 0.86 95.02% CI (0.74 – 0.99) p=0.04Time from randomization (months)

2112

1875

LEADER

CV death, non-fatal MI, or non-fatal stroke

370

166

4473 4352 4237 4123 4010 3914 1543 407

Patients at risk

Placebo

Empagliflozin 4687

2333

1161

741

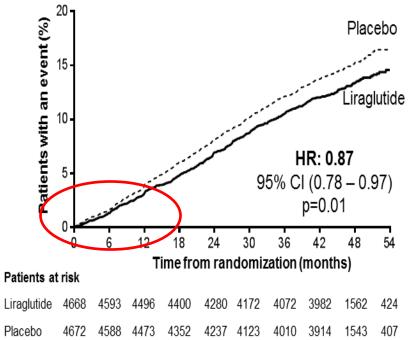
1380

Empagliflozin and Liraglutide

EMPA-REG OUTCOME

CV death, non-fatal MI, or non-fatal stroke

event (%) Placebo a Empagliflozin atients with HR: 0.86 95.02% CI (0.74 – 0.99) p=0.04


Time from randomization (months)

1875

2112

LEADER

CV death, non-fatal MI, or non-fatal stroke

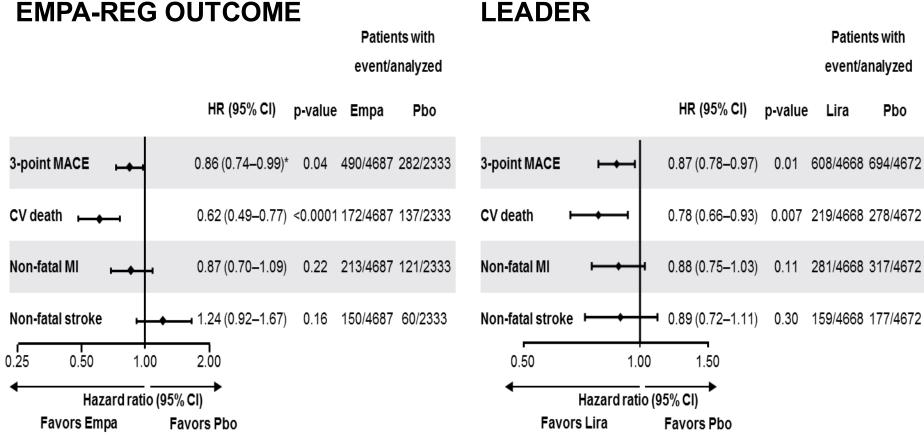
370

166

Patients at risk

Placebo

Empagliflozin 4687


2333

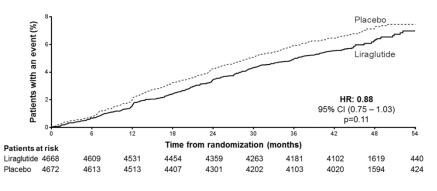
1161

741

1380

Individual components of the primary endpoint

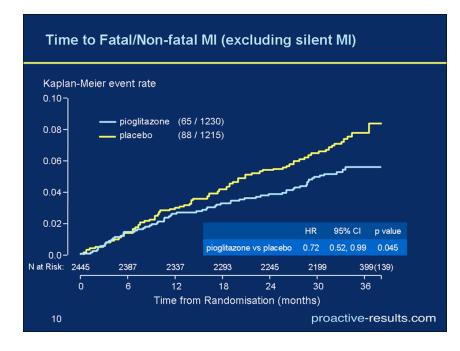
*95.02% CI.


CV: cardiovascular; Empa: empaglifloin; Lira: liraglutide; MACE: major adverse cardiovascular event; MI: myocardial infarction; Pbo: placebo. Zinman B et al. Presented at European Association for the Study of Diabetes 2015, Stockholm, Sweden.

Myocardial Infarction

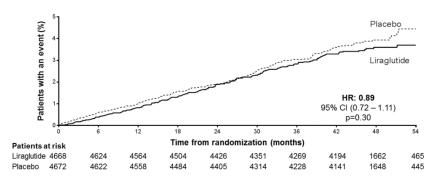
LEADER

PROactive


Time to non-fatal myocardial infarction

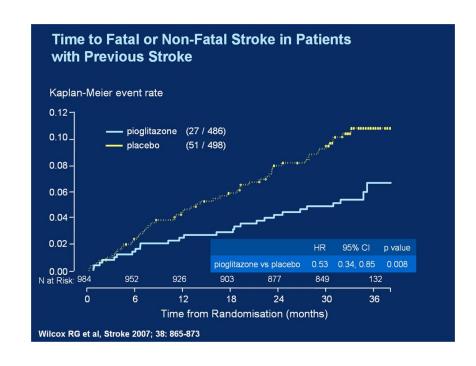
LEADER®
Linsglutide Effect and Action in Ekshetes:

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. Cit confidence interval: HR hazard ratio.

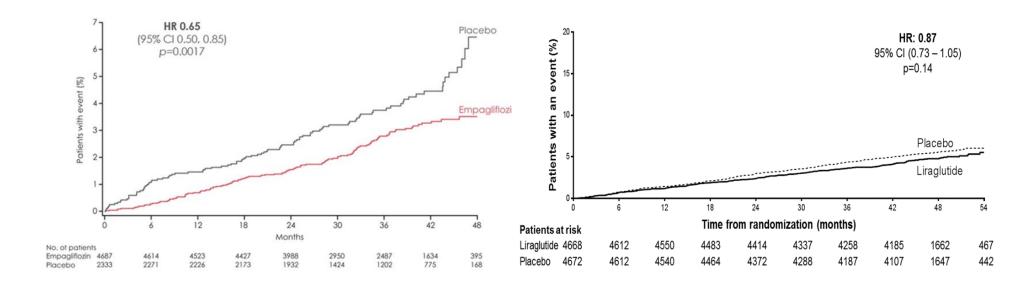

Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA, USA.

Stroke

LEADER


Time to non-fatal stroke

The cumulative incidences were estimated with the use of the Kaplan-Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months.


Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA, USA

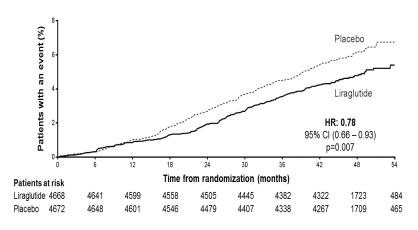
PROactive

Pioglitazone – more impact

Hospitalisation for heart failure

Empagliflozin

Liraglutide


Liraglutide – how does it cause cardiovascular benefit?

Please cite this article in press as: Drucker, The Cardiovascular Biology of Glucagon-like Peptide-1, Cell Metabolism (2016), http://dx.doi.org/10.1016/ i.cmet.2016.06.009

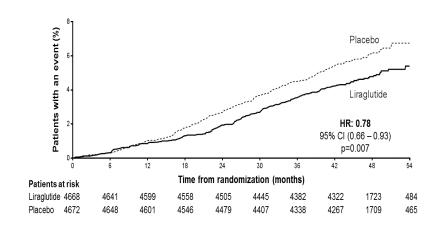
Cell Metabolism

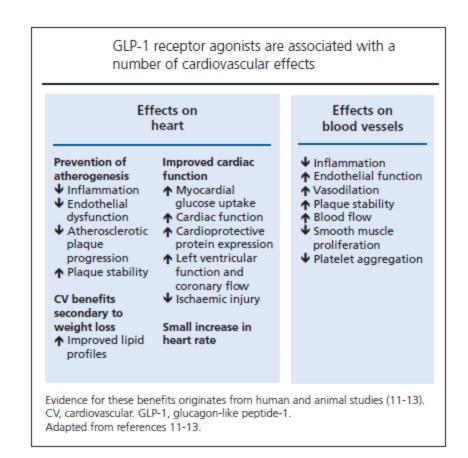
Perspective

The Cardiovascular Biology of Glucagon-like Peptide-1

Daniel J. Drucker^{1,*}

Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada *Correspondence: drucker@lunenfeld.ca http://dx.doi.org/10.1016/j.cmet.2016.06.009


Glucagon-like peptide-1, produced predominantly in enteroendocrine cells, controls glucose metabolism and energy homeostasis through regulation of islet hormone secretion, gastrointestinal motility, and food intake, enabling development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. GLP-1 also acts on the immune system to suppress inflammation, and GLP-1R signaling in multiple tissues impacts cardiovascular function in health and disease. Here we review how GLP-1 and clinically approved GLP-1R agonists engage mechanisms that influence the risk of developing cardiovascular disease. We discuss how GLP-1R agonists modify inflammation, cardiovascular physiology, and pathophysiology in normal and diabetic animals through direct and indirect mechanisms and review human studies illustrating mechanisms linking GLP-1R signaling to modification of the cardiovascular complications of diabetes. The risks and benefits of GLP-1R agonists are updated in light of recent data suggesting that GLP-1R agonists favorably modify outcomes in diabetic subjects at high risk for cardiovascular events.


Among several dozen peptides secreted from enteroendocrine the treatment of obesity (Drucker, 2015; Meier, 2012; Ussher and

cells (EECs), glucagon-like peptide-1 (GLP-1(7-36)amide and Drucker, 2014). Collectively, the interest in these new agents has GLP-1(7-37), collectively referred to as GLP-1) has become the fostered considerable research activity, and new information on most extensively studied gut hormone with the greatest transla- mechanisms of action and clinical data on long-term safety tional relevance. Initial studies of GLP-1 focused on its role as continue to accumulate (Campbell and Drucker, 2013; Drucker,

Drucker DJ. Cell Metab. 2016 Jun 22. pii: S1550-4131(16)30295-9.

Liraglutide – how does it cause cardiovascular benefit?

Drucker DJ. Cell Metab. 2016 Jun 22. pii: S1550-4131(16)30295-9.

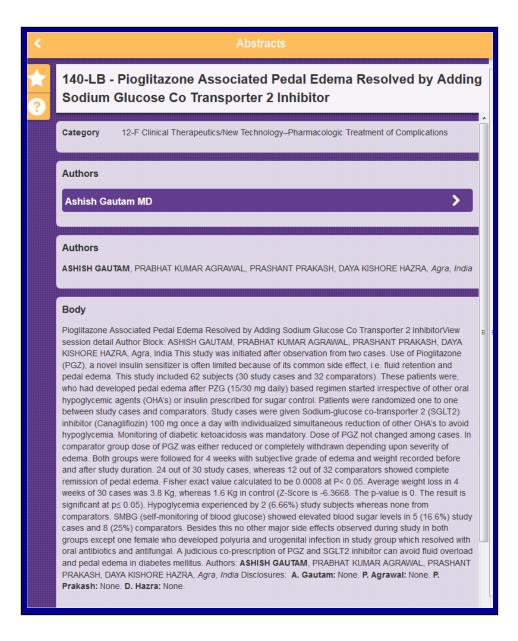
Summary

- The accumulated evidence suggests that pioglitazone reduces cardiovascular death, myocardial infarction and stroke by slowing down, or even reversing, the atherosclerotic process
- The EMPA-REG OUTCOME™ trial suggests that empagliflozin reduces cardiovascular death but does not reduce either stroke or myocardial infarction, signifying a different mechanism to that of pioglitazone, more hemodynamic in nature
- The LEADER® trial again shows a bigger impact of liraglutide on cardiovascular death than on stroke and myocardial infarction but, in contrast to empagliflozin, no impact on heart failure. This suggests different mechanisms for liraglutide to those of both pioglitazone and empagliflozin

Potential for agents to complement each other

Benefit

- Pioglitazone:
 - reduction of cardiovascular death, myocardial infarction and stroke by reduction of atherosclerotic process
- Empagliflozin:
 - reduction of heart failure
 - reduction of cardiovascular death
 - NB weight loss
- Liraglutide.
 - reduction of cardiovascular death but not heart failure
 - NB weight loss


Side effect

Fluid retention weight gain

Genital infection

GI side effects

Pioglitazone and SGLT2 inhibitor

Fluid retention and weight gain associated with pioglitazone mitigated by SGLT2 inhibitor

Potential for agents to complement each other

Benefit

- Pioglitazone:
 - reduction of cardiovascular death, myocardial infarction and stroke by reduction of atherosclerotic process
- Empagliflozin:
 - reduction of heart failure
 - reduction of cardiovascular death
 - NB weight loss
- Liraglutide:
 - reduction of cardiovascular death but not heart failure
 - NB weight loss

Side effect

Fluid retention weight gain

Genital infection

GI side effects

Potential for agents to complement each other

Benefit

- Pioglitazone:
 - reduction of cardiovascular death, myocardial infarction and stroke by reduction of atherosclerotic process
- Empagliflozin:
 - reduction of heart failure
 - reduction of cardiovascular death
 - NB weight loss
- Liraglutide:
 - reduction of cardiovascular death but not heart failure
 - NB weight loss

Side effect

Fluid retention weight gain

Genital infection

GI side effects

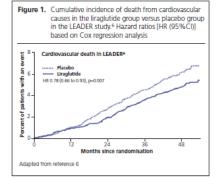
Conclusion

EDITORIAI

Diabetes medications with cardiovascular protection – what now after LEADER®? Could metformin, pioglitazone, empagliflozin and liraglutide complement each other to save lives?

ROBERT EJ RYDER.1 RALPH A DEFRONZO2

We suggested in a previous editorial that the combination of metformin, pioglitazone and empagliflozin would likely improve cardiovascular outcomes in patients with type 2 diabetes at high cardiovascular risk.1 This conclusion was 15 years in the making: 7 years between the UK Prospective Diabetes Study (UKPDS) in 19982 and the PROspective pioglitAzone Clinical Trial In macroVascular Events (PROactive) study in 2005,3 and then another 8 years from there to the landmark moment when we saw the results of the Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes trial (EMPA-REG OUTCOMETM) at the European Association for the Study of Diabetes (EASD) 2015 in Stockholm.^{4,5} Against this background, it is remarkable that we needed to wait only another 9 months for a similar moment at American Diabetes Association (ADA) 2016 in New Orleans. This 4th landmark event, when the finding shown in Figure 1 was greeted with loud applause, was the presentation of the results of the Liraquitide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER®) study, which evaluated the effect of the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide on cardiovascular outcomes in people with type 2 diabetes at high cardiovascular risk. 6,7 Once again though, as the results unfolded, we realised that we were to be left with as many questions as answers.


Our previous editorial concluded that the accumulated evidence from multiple studies suggests that pioglitazone (PROactive) probably exerts its beneficial effects by slowing down − or even reversing − the atherosclerotic process.¹ Empagliflozin (EMPA-REG OUTCOME™), which reduced cardiovascular death but not myocardial infarction or stroke, seemed to have an entirely different mechanism, more haemodynamic in nature and

¹ City Hospital, Birmingham, UK

² University of Texas Health Science Center, San Antonio, Texas, USA

Address for correspondence: Dr Bob Ryder
Diabetes and Endocrine Unit, City Hospital, Dudley Road, Birmingham
B18 7QH, UK
F-mail: bob pyder@nbs.net

Br J Diabetes 2016;16:ONLINE AHEAD OF PUBLICATION http://dx.doi.org/10.15277/bjd.2016.096

involving the combined effects of a decrease in blood pressure (after load reduction) and volume depletion (preload reduction).18 Other hypotheses have now been proposed, including the possibility that empagliflozin, by increasing circulating ketone bodies, provides the failing myocardium with a more efficient fuel source.9 Further evidence for pioglitazone as an agent of cardiovascular protection has also emerged from a study in an insulin resistant (but non-diabetic) population with recent prior ischaemic stroke or transient ischaemic attack: in this study the risk of recurrent stroke plus myocardial infarction was reduced by 24% in patients who received pioglitazone versus those who received placebo. 10 These mechanisms of cardiovascular benefit are potentially complementary. Accordingly, we proposed that combination therapy with pioglitazone and empagliflozin might provide additive, or even multiplicative, cardiovascular benefits in people with diabetes at high cardiovascular risk compared

Figure 2 shows side-by-side the effects of empagliflozin in EMPA-REG OUTCOME™ and liraglutide in LEADER® on threeThe combination of metformin, pioglitazone, empagliflozin and liraglutide now appears to be the optimum cocktail of medications for improving both glycaemic control and cardiovascular outcomes for people with type 2 diabetes at high cardiovascular risk. The evidence we have today suggests that these agents in combination could complement each other to prevent cardiovascular events and save lives

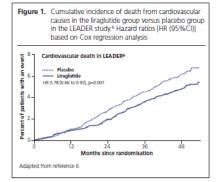
Conclusion

EDITORIAI

Diabetes medications with cardiovascular protection – what now after LEADER®? Could metformin, pioglitazone, empagliflozin and liraglutide complement each other to save lives?

ROBERT EJ RYDER.1 RALPH A DEFRONZO2

We suggested in a previous editorial that the combination of metformin, pioglitazone and empagliflozin would likely improve cardiovascular outcomes in patients with type 2 diabetes at high cardiovascular risk.1 This conclusion was 15 years in the making: 7 years between the UK Prospective Diabetes Study (UKPDS) in 19982 and the PROspective pioglitAzone Clinical Trial In macroVascular Events (PROactive) study in 2005,3 and then another 8 years from there to the landmark moment when we saw the results of the Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes trial (EMPA-REG OUTCOMETM) at the European Association for the Study of Diabetes (EASD) 2015 in Stockholm.^{4,5} Against this background, it is remarkable that we needed to wait only another 9 months for a similar moment at American Diabetes Association (ADA) 2016 in New Orleans. This 4th landmark event, when the finding shown in Figure 1 was greeted with loud applause, was the presentation of the results of the Liraquitide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER®) study, which evaluated the effect of the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide on cardiovascular outcomes in people with type 2 diabetes at high cardiovascular risk. 6,7 Once again though, as the results unfolded, we realised that we were to be left with as many questions as answers.


Our previous editorial concluded that the accumulated evidence from multiple studies suggests that plogilitazone (PROactive) probably exerts its beneficial effects by slowing down – or even reversing – the atherosclerotic process.¹ Empagliflozin (EMPA-REG OUTCOME™), which reduced cardiovascular death but not myocardial infarction or stroke, seemed to have an entirely different mechanism, more haemodynamic in nature and

¹ City Hospital, Birmingham, UK

² University of Texas Health Science Center, San Antonio, Texas, USA

Address for correspondence: Dr Bob Ryder
Diabetes and Endocrine Unit, City Hospital, Dudley Road, Birmingham
B18 7QH, UK
F-mail: hob pyder@nbs.net

Br J Diabetes 2016;16:ONLINE AHEAD OF PUBLICATION http://dx.doi.org/10.15277/bjd.2016.096

involving the combined effects of a decrease in blood pressure (after load reduction) and volume depletion (preload reduction).18 Other hypotheses have now been proposed, including the possibility that empagliflozin, by increasing circulating ketone bodies, provides the failing myocardium with a more efficient fuel source.9 Further evidence for pioglitazone as an agent of cardiovascular protection has also emerged from a study in an insulin resistant (but non-diabetic) population with recent prior ischaemic stroke or transient ischaemic attack; in this study the risk of recurrent stroke plus myocardial infarction was reduced by 24% in patients who received pioglitazone versus those who received placebo. 10 These mechanisms of cardiovascular benefit are potentially complementary. Accordingly, we proposed that combination therapy with pioglitazone and empagliflozin might provide additive, or even multiplicative, cardiovascular benefits in people with diabetes at high cardiovascular risk compared

Figure 2 shows side-by-side the effects of empagliflozin in EMPA-REG OUTCOME™ and liraglutide in LEADER® on threeThe combination of metformin, pioglitazone, empagliflozin and liraglutide now appears to be the optimum cocktail of medications for improving both glycaemic control and cardiovascular outcomes for people with type 2 diabetes at high cardiovascular risk. The evidence we have today suggests that these agents in combination could complement each other to prevent cardiovascular events and save lives

What about since 2016?

What about since 2016?

 My name is Dr Bob Ryder and I am a "being at the cardiovascular outcome trial presentation-oholic"

Has there ever been separation of the lines?

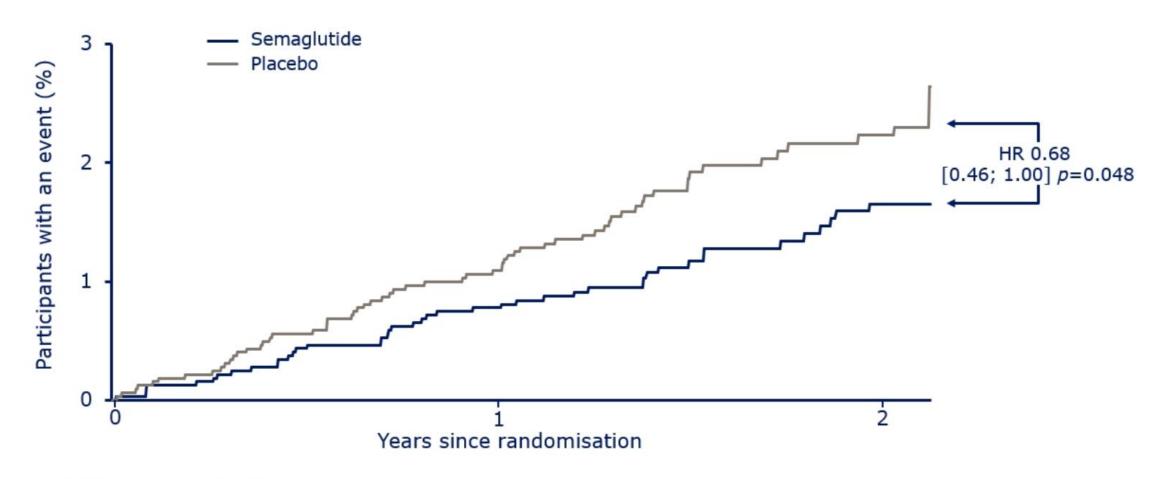
Metformin	UKPDS	EASD	September	1998 Barcelona
Pioglitazone	PROactive	EASD	September	2005 Athens
Empagliflozin	EMPA-REG	EASD	September	2015 Stockholm
Liraglutide	LEADER	ADA	June	2016 New Orleans
Injectable semaglutide	SUSTAIN-6	EASD	September	2016 Munich
Cangliflozin	CANVAS	ADA	June	2017 San Diego
Exenatide QW	EXCEL	EASD	September	2017 Lisbon
Albiglutide	HARMONY Outcomes	EASD	September	2018 Berlin
Dapagliflozin	DECLARE-TIMI 58	AHA	November	2018 Chicago
Dulaglutide	Rewind	ADA	June	2019 San Francisco
Oral semaglutide	Pioneer 6	ADA	July	2019 San Francisco
Dapagliflozin	DAPA-HF	EASD	September	2019 Barcelona
Ertugliflozin	VERTIS-CV	ADA	June	2020 Virtual
Empagliflozin	EMPEROR-reduced	EASD	September	2020 Virtual
Sotagliflozin	SCORED and SOLOIST	AHA	November	2020 Virtual
Efpeglenatide	Amplitude-O	ADA	June	2021 Virtual
Empagliflozin	EMPEROR-preserved	EASD	September	2021 Virtual
Dapagliflozin	DELIVER	EASD	September	2022 Stockholm

Metformin	UKPDS	EASD	September	1998 Barcelona	
Pioglitazone	PROactive	EASD	September	2005 Athens	
Empagliflozin	EMPA-REG	EASD	September	2015 Stockholm	
Liraglutide	LEADER	ADA	June	2016 New Orleans	
Injectable semaglutide	SUSTAIN-6	EASD	September	2016 Munich	
Cangliflozin	CANVAS	ADA	June	2017San Diego	
Exenatide QW	EXCEL	EASD	September	2017 Lisbon	
Albiglutide	HARMONY Outcomes	EASD	September	2018 Berlin	
Dapagliflozin	DECLARE-TIMI 58	AHA	November	2018 Chicago	
Dulaglutide	Rewind	ADA	June	2019 San Francisco	
Oral semaglutide	Pioneer 6	ADA	July	2019 San Francisco	
Dapagliflozin	DAPA-HF	EASD	September	2019 Barcelona	
Ertugliflozin	VERTIS-CV	ADA	June	2020 Virtual	
Empagliflozin	EMPEROR-reduced	EASD	September	2020 Virtual	
Sotagliflozin	SCORED and SOLOIST	АНА	November	2020 Virtual	
Efpeglenatide	Amplitude-O	ADA	June	2021 Virtual	
Empagliflozin	EMPEROR-preserved	EASD	September	2021 Virtual	
Dapagliflozin	DELIVER	EASD	September	2022 Stockholm	

Metformin	UKPDS	EASD	September	1998 Barcelona
Pioglitazone	PROactive	EASD	September	2005 Athens
Empagliflozin	EMPA-REG	EASD	September	2015 Stockholm
Liraglutide	LEADER	ADA	June	2016 New Orleans
Injectable semaglutide	SUSTAIN-6	EASD	September	2016 Munich
Cangliflozin	CANVAS	ADA	June	2017 San Diego
Exenatide QW	EXCEL	EASD	September	2017 Lisbon
Albiglutide	HARMONY Outcomes	EASD	September	2018 Berlin
Dapagliflozin	DECLARE-TIMI 58	AHA	November	2018 Chicago
Dulaglutide	Rewind	ADA	June	2019 San Francisco
Oral semaglutide	Pioneer 6	ADA	July	2019 San Francisco
Dapagliflozin	DAPA-HF	EASD	September	2019 Barcelona
Ertugliflozin	VERTIS-CV	ADA	June	2020 Virtual
Empagliflozin	EMPEROR-reduced	EASD	September	2020 Virtual
Sotagliflozin	SCORED and SOLOIST	AHA	November	2020 Virtual
Efpeglenatide	Amplitude-O	ADA	June	2021 Virtual
Empagliflozin	EMPEROR-preserved	EASD	September	2021 Virtual
Dapagliflozin	DELIVER	EASD	September	2022 Stockholm

SGLTi

Metformin	UKPDS	EASD	September	1998 Barcelona
Pioglitazone	PROactive	EASD	September	2005 Athens
Empagliflozin	EMPA-REG	EASD	September	2015 Stockholm
Liraglutide	LEADER	ADA	June	2016 New Orleans
Injectable semaglutide	SUSTAIN-6	EASD	September	2016 Munich
Cangliflozin	CANVAS	ADA	June	2017 San Diego
Exenatide QW	EXCEL	EASD	September	2017 Lisbon
Albiglutide	HARMONY Outcomes	EASD	September	2018 Berlin
Dapagliflozin	DECLARE-TIMI 58	AHA	November	2018 Chicago
Dulaglutide	Rewind	ADA	June	2019 San Francisco
Oral semaglutide	Pioneer 6	ADA	July	2019 San Francisco
Dapagliflozin	DAPA-HF	EASD	September	2019 Barcelona
Ertugliflozin	VERTIS-CV	ADA	June	2020 Virtual
Empagliflozin	EMPEROR-reduced	EASD	September	2020 Virtual
Sotagliflozin	SCORED and SOLOIST	AHA	November	2020 Virtual
Efpeglenatide	Amplitude-O	ADA	June	2021 Virtual
Empagliflozin	EMPEROR-preserved	EASD	September	2021 Virtual
Danagliflozin	DELIVER	FASD	Sentember	2022 Stockholm


GLP1-RA

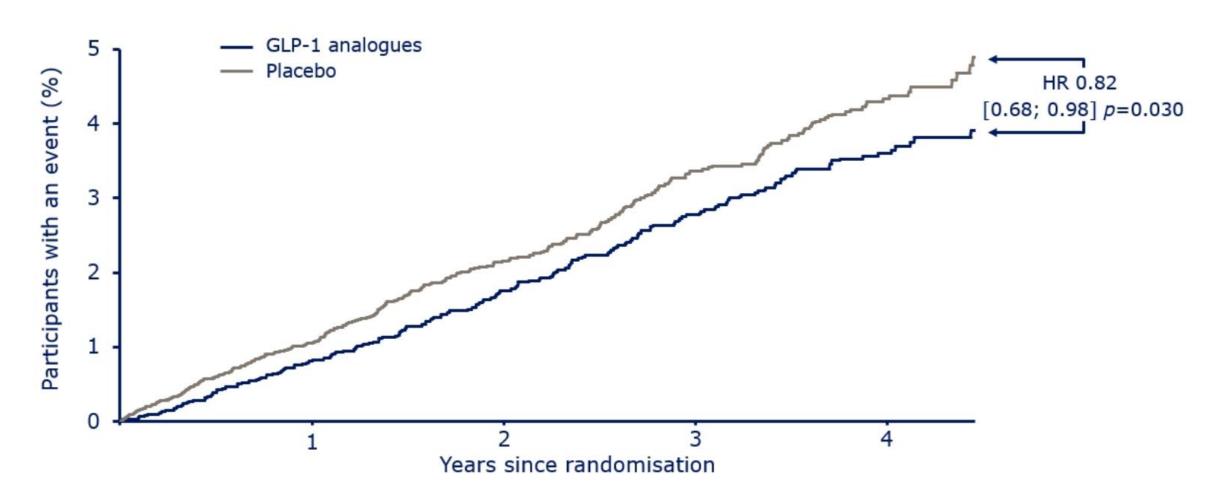
	Metformin	UKPDS	EASD	September	1998 Barcelona	
	Pioglitazone	PROactive	EASD	September	2005 Athens	
	Empagliflozin	EMPA-REG	EASD	September	2015 Stockholm	
	Liraglutide	LEADER	ADA	June	2016 New Orleans	
	Injectable semaglutide	SUSTAIN-6	EASD	September	2016 Munich	
GLP1-RA	Cangliflozin	CANVAS	ADA	June	2017 San Diego	
	Exenatide QW	EXCEL	EASD	September	2017 Lisbon	
	Albiglutide	HARMONY Outcomes	EASD	September	2018Berlin	
	Dapagliflozin	DECLARE-TIMI 58	AHA	November	2018 Chicago	
	Dulaglutide	Rewind	ADA	June	2019 San Francisco	
	Oral semaglutide	Pioneer 6	ADA	July	2019 San Francisco	
	Dapagliflozin	DAPA-HF	EASD	September	2019 Barcelona	
	Ertugliflozin	VERTIS-CV	ADA	June	2020 Virtual	
	Empagliflozin	EMPEROR-reduced	EASD	September	2020 Virtual	
	Sotagliflozin	SCORED and SOLOIST	AHA	November	2020 Virtual	
	Efpeglenatide	Amplitude-O	ADA	June	2021 Virtual	
	Empagliflozin	EMPEROR-preserved	EASD	September	2021 Virtual	
	Dapagliflozin	DELIVER	EASD	September	2022Stockholm	

Cumulative incidence of stroke over time

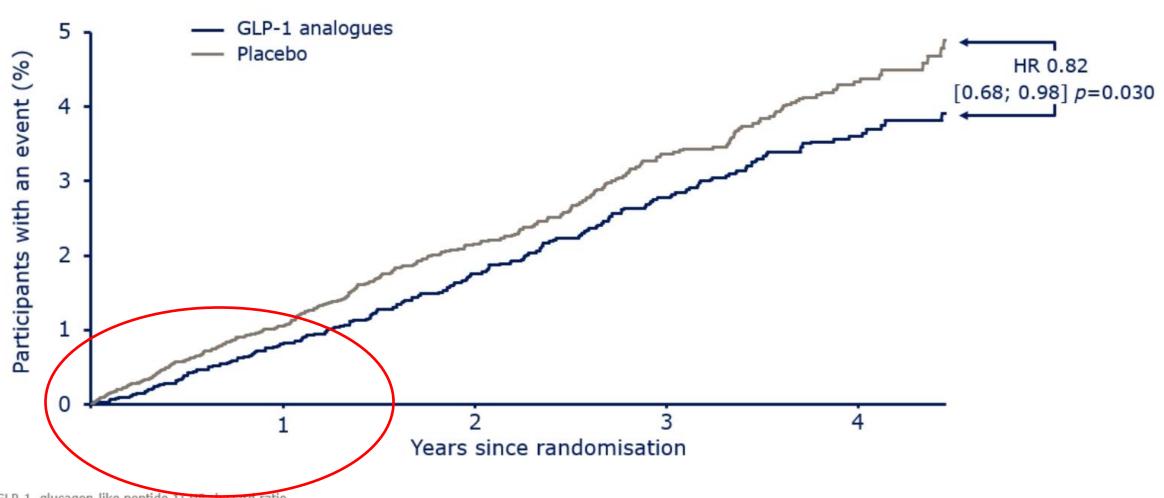
GLP-1, glucagon-like peptide 1; HR, hazard ratio

Presented at the 56th Annual Meeting of the European Association for the Study of Diabetes (EASD), 21-25 September 2020

Effects of liraglutide and semaglutide on stroke subtypes in patients with type 2 diabetes: a post hoc analysis of the LEADER, SUSTAIN 6 and PIONEER 6 trials



W. David Strain, Søren Rasmussen, Hans A. Saevereid, Martin A. James


Cumulative incidence of stroke over time

GLP-1 analogues reduce incidence of stroke

Cumulative incidence of stroke over time

GLP-1, glucagon-like peptide 1; HR, hazaru ratio

Time-to-first event a	nalysis _{n (%)}			HR (95% CI)	p-value
	GLP-1 analogues [‡] (N=7,907)	Placebo (N=7,913)	Favours GLP-1 Favours placebo	>	
All strokes	216 (2.7)	262 (3.3)		0.82 (0.68-0.98)	0.030
Ischaemic stroke*	186 (2.4)	220 (2.8)		0.84 (0.69-1.02)	0.08
Large artery atherosclerosis	53 (0.7)	56 (0.7)	-	0.94 (0.65-1.37)	0.75
Cardioembolism	21 (0.3)	23 (0.3)		0.91 (0.50-1.64)	0.75
Small vessel occlusion	93 (1.2)	119 (1.5)		0.78 (0.59-1.02)	0.07
Other determined cause	5 (0.1)	4 (0.1)		1.25 (0.34-4.65)	0.74
Undetermined cause [†]	17 (0.2)	21 (0.3)		0.81 (0.43-1.53)	0.51
Haemorrhagic stroke	23 (0.3)	32 (0.4)		0.72 (0.42-1.22)	0.22
Undetermined stroke	10 (0.1)	14 (0.2)		0.71 (0.32-1.60)	0.41
			0.1 1 1 HR (95% CI)	0	

^{*}Ischaemic strokes were subcategorised according to TOAST criteria by an external, blinded reviewer. †Included patients with ≥2 causes of stroke, undetermined cause despite extensive evaluation and cause of stroke not known due to incomplete evaluation. *Included liraglutide, and OW s.c. and daily oral semaglutide. CI, confidence interval; GLP-1, glucagon-like peptide-1; HR, hazard ratio; OW, once weekly; s.c., subcutaneous; TOAST, Trial of Org10172 in Acute Stroke Treatment

Conclusion

FDITORIA

Diabetes medications with cardiovascular protection: the likelihood of benefit from combination therapy increases further following new evidence during 2020

ROBERT EJ RYDER, 1 MUHAMMAD A ABDUL-GHANI, 2 RALPH A DEFRONZO2

Key words: Type 2 diabetes, cardiovascular outcome studies, pioglitazone, SGLT2 inhibitors, GLP-1 receptor agonist, heart failure stroke

In every recent year, new cardiovascular outcome studies are published, illuminating our understanding regarding diabetes medications with cardiovascular protection, and we have discussed these in our previous editorials.1-6 In 2020 two new studies from the sodium glucose transporter 2 (SGLT2) inhibitor class and one from the glucagon-like peptide-1 receptor agonist (GLP-1RA) class of antidiabetic medications are worth highlighting. Each provided new information to help our understanding about the cardioprotective benefits of these classes so that we can further improve patient care. On 16 June 2020, during the 80th Scientific Sessions of the American Diabetes Association virtual meeting, the results of the Evaluation of Ertugliflozin Efficacy and Safety Cardiovascular Outcomes Trial (VERTIS CV) study were presented and have since been published in the New England Journal of Medicine. 7,8 On 29 August 2020, during the European Society of Cardiology – The Digital Experience Congress 2020, the results of the Empagliflozin Outcome Trial in Patients with Chronic Heart Failure and a Reduced Ejection Fraction (EMPEROR-Reduced) were presented and published simultaneously in the New England Journal of Medicine.9,10 The study was then presented in detail on 24 September 2020 during the European Association for the Study of Diabetes Virtual Congress (EASD) 2020.11 With regard to the GLP-1RA class, some further cardiovascular outcome data were presented at the EASD 2020 in the form of a post hoc analysis of pooled data from the LEADER, SUSTAIN 6 and PIONEER 6 cardiovascular outcome studies. 12

SGLT2 inhibitors

VERTIS CV was a randomised controlled trial of the SGLT2 inhibitor ertugliflozin versus placebo in 8,246 people with type 2 diabetes all of whom had prior cardiovascular disease.^{7,8} After a follow-up

City Hospital, Birmingham, UK
 University of Texas Health Science Center, San Antonio, Texas, USA

Address for correspondence: Dr Bob Ryder
Diabetes and Endocrine Unit, City Hospital, Dudley Road, Birmingham
B18.70H LIK

E-mail: bob.ryder@nhs.net

Br J Diabetes 2020;20:84-88 https://doi.org/10.15277/bid.2020.276 period of 6.1 years, the primary endpoint of 3-point major adverse cardiovascular events (MACE: cardiovascular death, non-fatal my-ocardial infarction and non-fatal stroke) achieved statistical significance for non-inferiority (HR=0.97, 95.6% CI 0.85 to 1.11; p<0.001 for non-inferiority).78 However, it did not achieve statistical significance for superiority with regard to 3-point MACE or the combined endpoint of death from cardiovascular causes or hospitalisation for heart failure (HHF). There was a 30% reduction in HHF (HR=0.70, 95% CI 0.54 to 0.90).78

EMPEROR-Reduced was a randomised controlled trial of empagliflozin 10 mg daily versus placebo in 3,730 patients with class II, III or IV heart failure and an ejection fraction of 40% or less (HFEP)-³¹ 150% of the study population had type 2 diabetes and 50% did not have diabetes. Over a median follow-up of 16 months there was a 25% reduction in the primary composite endpoint of cardiovascular death or hospitalisation for worsening heart failure (HR=0.75, 95% C 10.65 to 0.86). The results were similar whether the patient had diabetes (HR=0.72, 95% C 10.66 to 0.87) or did not have diabetes (HR=0.78, 95% C 10.68 to 0.97). There was a 30% reduction in HHF (HR=0.70, 95% C 10.58 to 0.85).

Building on the experience gained from their predecessor trials with SGLT2 inhibitors. 1,3,5,6,13,14 we have learned further from VER-TIS-CV and EMPORER-Reduced about the extent to which the cardiovascular benefits of SGLT2 inhibitors are mediated through the protection from heart failure. Figure 1A shows a meta-analysis of time to first HHF from the five cardiovascular outcome studies with SGLT2 inhibitors showing this universal benefit for the class with no heterogeneity. In keeping with this, a recent meta-analysis of the association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes concluded that the largest benefit across the class was for an associated reduction in risk for HHF and kidney outcomes, with benefits for HHF risk being the most consistent observation across the trials. 15 Whilst the time to first MACE concludes a positive benefit for the class in metaanalysis (Figure 1B), there is nevertheless heterogeneity 15 with VER-TIS-CV^{7,8} and DECLARE-TIMI 58^{5,13} being outliers. Figure 2 shows a meta-analysis of the two trials of patients with HFrEF (DAPA-HF^{6,14} and EMPEROR-Reduced9-11) which studied SGLT2 inhibitors in patients with and without diabetes. Using the primary outcome of first HHF or cardiovascular death, the same benefit is seen for dapagliflozin and empagliflozin in patients with and without diabetes. 11,16 This suggests the benefit of SGLT2 inhibitors on heart failure does not depend upon the presence of diabetes or reduction in plasma glucose concentration, because SGLT2 inhibitors do not The combination of metformin, pioglitazone, an SGLT2 inhibitor and a long acting GLP-1 receptor agonist now appears to be the optimum cocktail of medications for improving both glycaemic control and cardiovascular outcomes for people with type 2 diabetes at high cardiovascular risk. The evidence we have today suggests that these agents in combination could complement each other to prevent cardiovascular events and save lives

THE BRITISH JOURNAL OF DIABETES

In conclusion 1

- Pioglitazone improves cardiovascular outcomes by slowing down or even reversing the atherosclerotic process
- SGLT2 inhibitors as a class exert cardiovascular benefit by improving heart failure in people with and without diabetes
- Pioglitazone and SGLT2 inhibitors may compliment each other to improve cardiovascular outcomes by different means and reduce side effects

In conclusion 2

- There also seems to be a class effect for long-acting GLP-1RAs with regard to improving cardiovascular outcomes, and it seems likely that this class of agents confers benefits by mechanisms that are different from both pioglitazone and SGLT2 inhibitors
- Pioglitazone, SGLT2 inhibitors and GLP1-receptor agonists may compliment each other to improve cardiovascular outcomes by different means and reduce side effects

In conclusion 3

- Pioglitazone and some GLP-1 receptor agonists reduce stroke by different means –
 - GLP-1 receptor agonists through a rapid effect that may be mediated by an effect of small vessel occlusion
 - Pioglitazone by a slower effect mediated by reduction in atherosclerosis
- Randomised controlled trials should be undertaken comparing GLP-1 receptor agonists (eg semaglutide) and pioglitazone on their own and in combination to reduce stroke risk as they may compliment each other

How can we reduce this risk

- Control Blood Pressure
- Use a statin in highest tolerated dose
- Use metformin in all patients if tolerated
- Use pioglitazone to slow or reverse the atherosclerosis
- Use an SGLT2i to reduce cardiovascular death and HHF

How can we reduce this risk

- Control Blood Pressure
- Use a statin in highest tolerated dose
- Use metformin in all patients if tolerated
- Use pioglitazone to slow or reverse the atherosclerosis
- Use an SGLT2i to reduce cardiovascular death and HHF
- Use a GLP1-RA to reduce cardiovascular death and stroke