

Reducing cardiovascular risk - (part 2)

Philip Newland-Jones
Consultant Pharmacist Diabetes & Endocrinology
Clinical Director Diabetes & Endocrinology UHSFT
Honorary Associate Professor in Diabetes & Endocrinology

- Lipids overview
- Treatment options
- Triglycerides as a CV risk marker
- Icosapent ethyl

Review Article

Annals of Clinical Biochemistry 2025, Vol. 0(0) 1-30 @ The Author(s) 2025

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/00045632251315303 journals.sagepub.com/home/acb

S Sage

Standardising lipid testing and reporting in the United Kingdom; a joint statement by HEART UK and The Association for Laboratory Medicine

Julia S Kenkre^{1,2}, Tina Mazaheri^{1,2}, R Dermot G Neely^{3,4}, Handrean Soran^{4,5,6}, Dev Datta^{4,7}, Peter Penson^{4,8,9}, Paul Downie^{4,10}, Alexandra M Yates^{11,12}, Katharine Hayden 12,13, Mayur Patel 12,14 and Jaimini Cegla 1,2,4,15

Abstract

Atherosclerotic cardiovascular disease remains a major cause of premature death in the United Kingdom, Lipid testing is a key tool used to assess cardiovascular risk and guide clinical management decisions. There are currently no national guidelines to provide evidence-based recommendations on lipid testing and reporting for UK laboratories and clinicians. Here we present consensus guidance, following a review of published evidence by a multidisciplinary group of UK experts across a range of laboratory and clinical services. Recommendations include the composition of a standard lipid profile; indications for, and composition of, an enhanced lipid profile including apolipoprotein B and lipoprotein (a); use of the Sampson-NIH calculation for LDL-c estimation and guidance on when to flag abnormal results. This consensus guidance on lipid testing and reporting in the United Kingdom has been endorsed by HEART UK and The Association for Laboratory Medicine.

Keywords

Lipids, cardiovascular disease, guidelines, laboratory

Accepted: 7th January 2025

DL-C using uations

NHS Foundation Trust

C - (TG / 2.2)esterol – TG/2.2)

$$\frac{G \times NHDLC}{2140} - \frac{TG^2}{16100} - 9.44$$

Total cholest

HDL Choleste particles – 'goo

Triglycerides

Other paramet

Chol:HDL rat

LDL Choleste particles – 'bad

Non-HDL Che all 'atherogenic LDL)

> Used less in guidelir

Importance of Full Lipid Profile

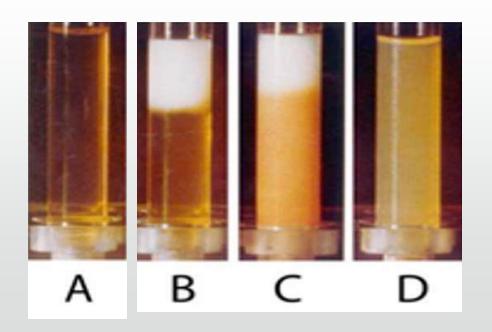
Total Cholesterol 8.5mmol/L

HDL-Cholesterol 1.8mmol/L

Triglycerides 1.1mmol/L

LDL-C 6.2mmol/L

Non-HDL-C 6.7mmol/L

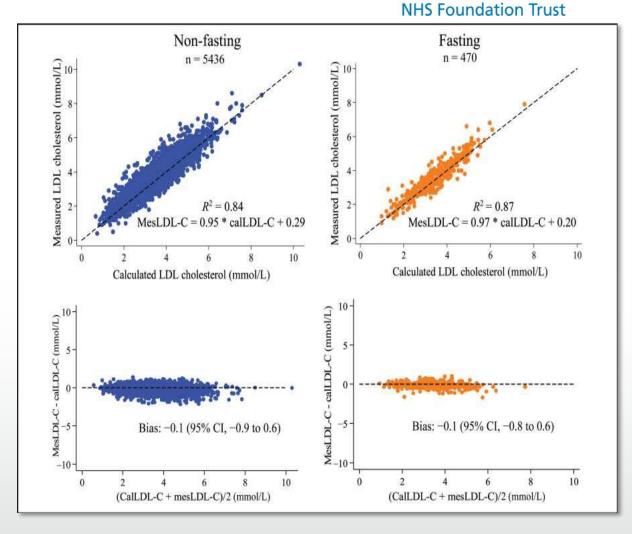

Total Cholesterol 8.5mmol/L

HDL-Cholesterol 1.8mmol/L

Triglycerides 23mmol/L

LDL-C NA

Non-HDL-C 6.7mmol/L



Fasting versus non fasting¹

Observational data, comparing random vs. non-fasting samples indicate that the maximal mean changes at 1–6 h after habitual meals are not clinically significant:

- +0.3mmol/L for triglycerides
- -0.2 mmol/L for total cholesterol
- -o.2mmol/L for LDL-C

Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points—a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine

Lowering LDL-C correlates with reduced CVD risk¹

1 mmol/L reduction in LDL-C reduces the risk of major vascular events by 22%^{1,2}

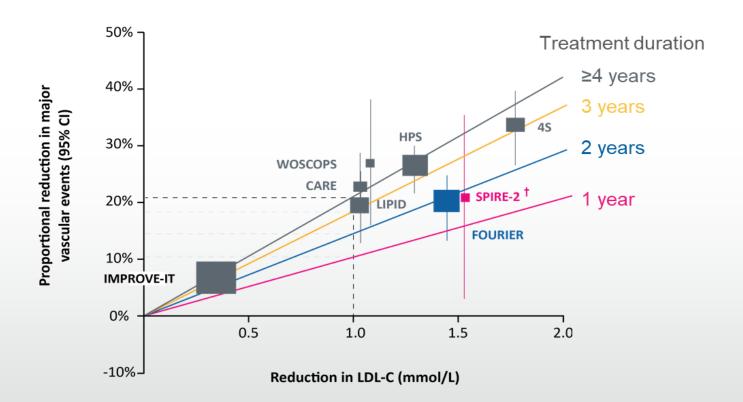
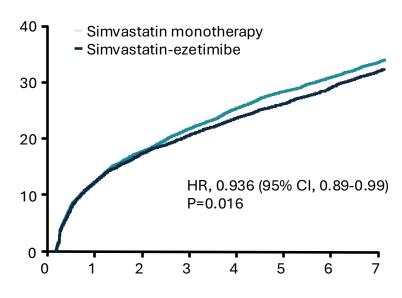



Figure adapted from Ference BA, et al. Eur Heart J 2018.

Patients on statins continue to experience CV events¹

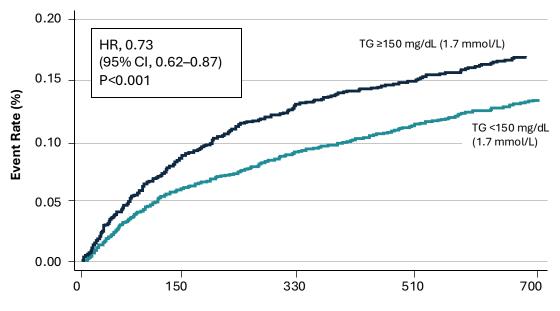
A double-blind, randomised study with 18,144 patients who had been hospitalised for ACS within the preceding 10 days and had LDL-C levels of 1.3 to 2.6 mmol/L¹

IMPROVE-IT: first occurrence of a 3-point MACE composite*

Adapted from Cannon C, et al. N Engl J Med. 2015.1

LDL-C (mmol/L; all patients)	Baseline	1 Year
Simvastatin		
N	9,009	6,939
Mean	2.4	1.8
Median (25 th , 75 th)	2.4 (2.0, 2.8)	1.7 (1.4, 2.1)
Ezetimibe/simvastatin		
N	8,990	6,864
Mean	2.4	1.4
Median (25 th , 75 th)	2.4 (2.0, 2.8)	1.3 (1.0, 1.6)

Outcome	HR (95% CI)	P-value
3 point MACE*	0.936 (0.89-0.99)	0.016
5 point MACE†	0.95 (0.90–1.0)	0.04
CV death	1.00 (0.89–1.13)	NS
All-cause death	0.99 (0.91–1.07)	NS

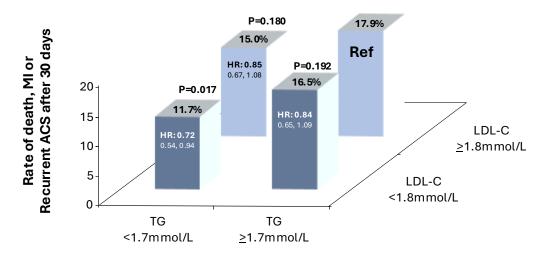

^{*}Death from CV disease, major coronary event or nonfatal stroke.

ACS, acute coronary syndrome; CI, confidence interval; CV, cardiovascular; HR, hazard ratio; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular events; MI, myocardial infarction.

[†]Death from CV causes, non-fatal MI, hospitalisation for unstable angina, all revascularisation ≥30 days and non-fatal stroke.

CV risk is present in patients with elevated TG levels¹

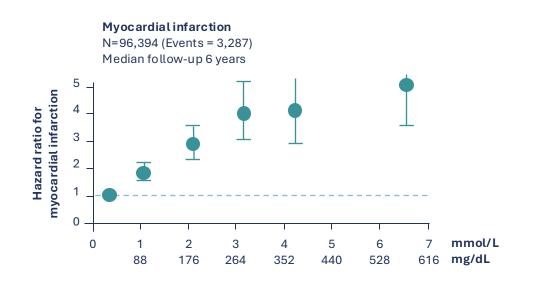
Post-hoc analysis of 3,718 patients from the PROVE-IT TIMI 22 trial who survived event free >30 days

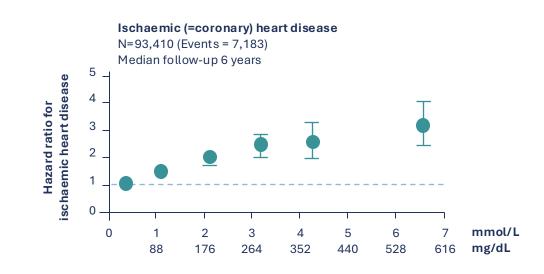


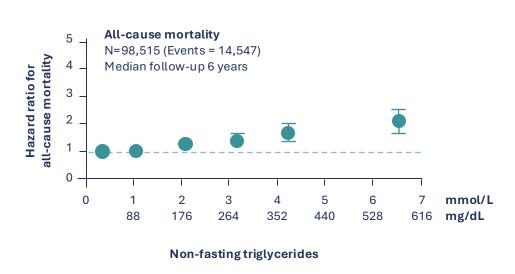
Days after Month 1 Visit

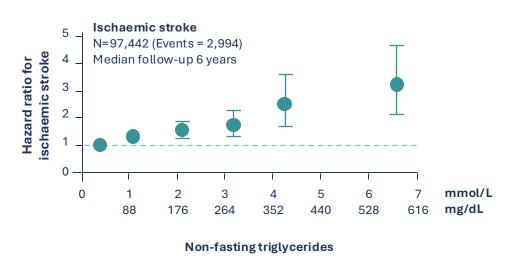
No. at Risk

TG≥150	1,157	1,066	1,017	659
TG <150	2,242	2,119	2,041	1,278

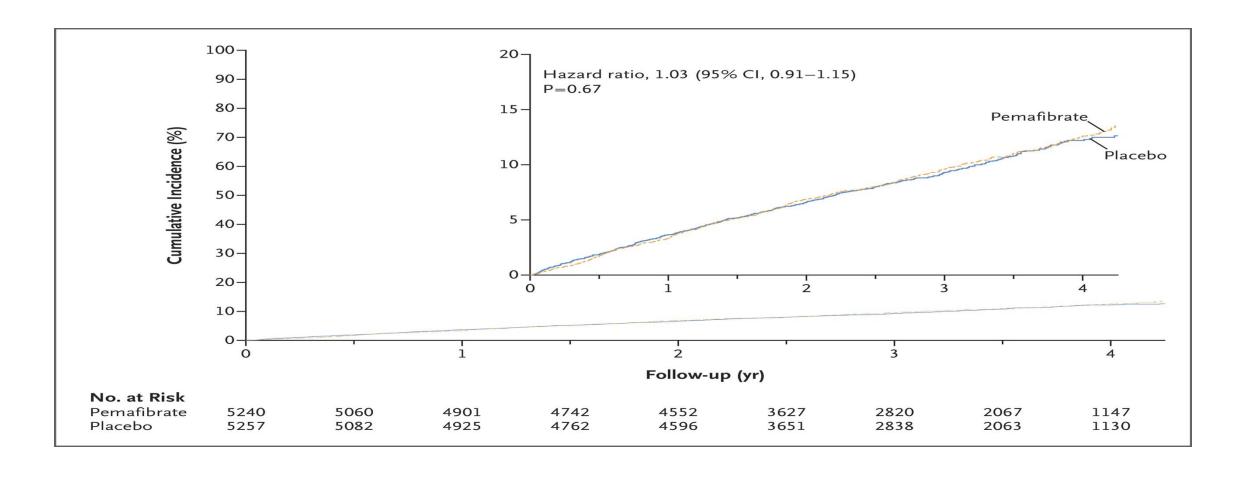

Adapted from Miller M, et al. J Am Coll Cardiol. 2008.1




Adapted from Miller M, et al. J Am Coll Cardiol. 2008.1

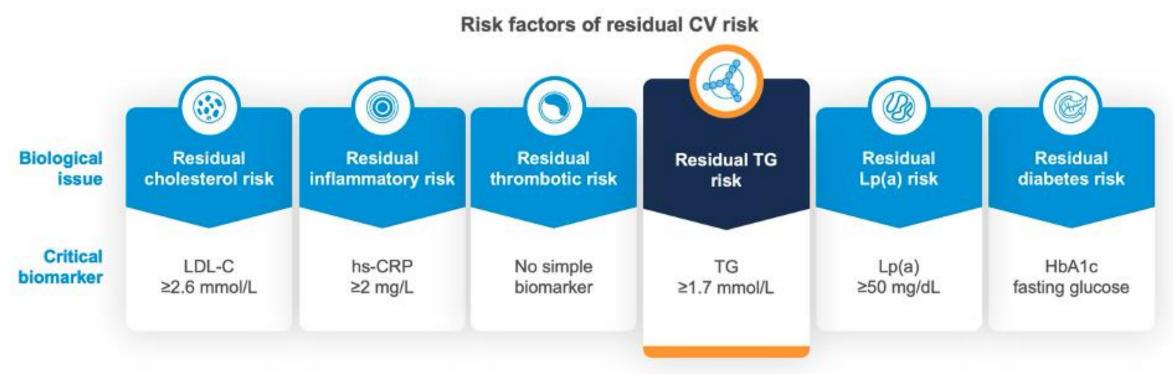

PROVE-IT TIMI 22 trial: 4,162 men and women hospitalised for ACS with total cholesterol 240 mg/dL (6.21 mmol/L), or 200 mg/dL (5.17 mmol/L) if receiving lipid-lowering therapy, were randomly assigned to receive intensive therapy (atorvastatin 80 mg daily) or standard therapy (pravastatin 40 mg daily) for a mean follow-up period of 2 years¹

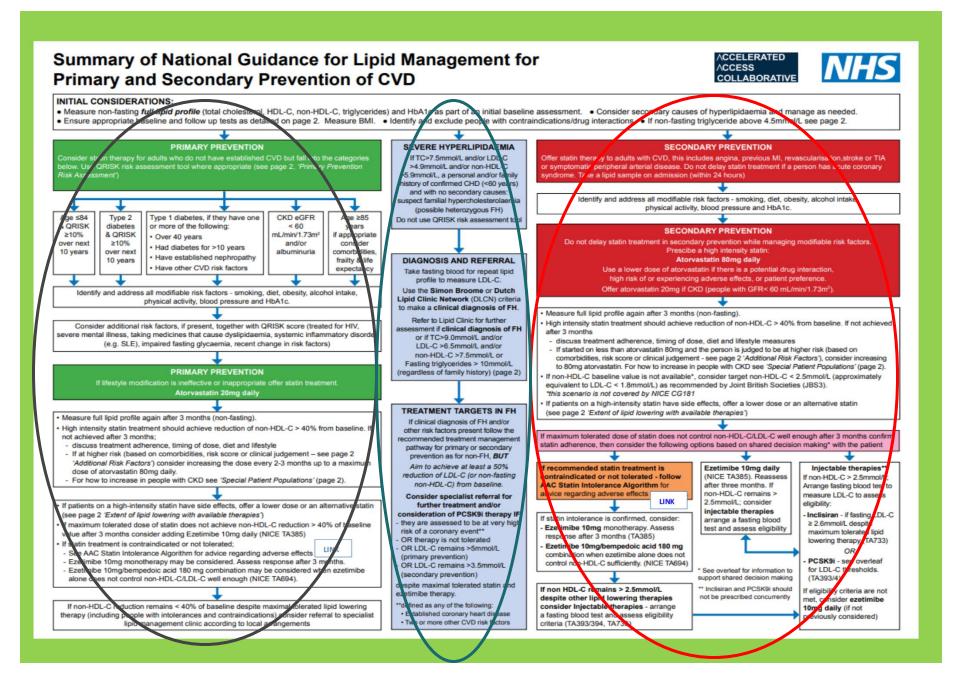
Copenhagen City Heart Study: Hypertriglyceridaemia and CVD risk



CVD, cardiova scular disease

Adapted from: Nordestgaard BG et a. Lancet 2014; Aug 16;384(9943):626-635;


PROMINENT Study


Secondary causes of hypertriglyceridaemia

Lifestyle	Diseases	Medications		
Excess calories	Poorly controlled diabetes	Corticosteroids		
Excess dietary fat intake	Hypothyroidism	Oral estrogen		
Excess simple sugars	Renal disease	Retinoic acid derivatives		
Overweight/Obesity	HIV infection	Beta adrenergic blockers		
Alcohol intake	Cushing's syndrome	Thiazide diuretics		
Pregnancy	Acromegaly	Protease inhibitors		
	Growth hormone deficiency	Bile acid sequestrants		
	Lipodystrophy	Anti-psychotic drugs		
	Paraproteinemia	Cyclosporine/tacrolimus		
	Nephrotic Syndrome	L-asparaginase		
	Inflammatory Disorders	Interferon alpha 2b		
		Cyclophosphamide		

Raised triglyceride levels are a key factor in increasing your patients' CV risk 1-3

Adapted from Lawler PR, et al. Eur Heart J. 2021.1

2025/2026 QOF INCLUDES TWO CHOLESTEROL INDICATORS¹

The NHS Long Term Plan calls for a more proactive, population health management approach to support people to stay healthy and prevent illness.

1

CHOL003

Percentage of patients on the QOF Coronary
Heart Disease (CHD), Peripheral Arterial Disease
(PAD), Stroke/Transient Ischaemic Attack (TIA) or
Chronic Kidney Disease (CKD) Register who are
currently prescribed a statin, or where a statin
is declined or clinically unsuitable, another
lipid-lowering therapy¹

CHOL003 - 38 points (Increased by 24 points)

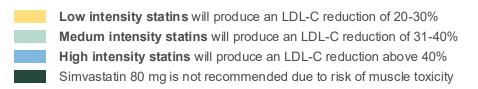
2

CHOL004

Percentage of patients on the QOF Coronary Heart Disease (CHD), Peripheral Arterial Disease (PAD), or Stroke/Transient Ischaemic Attack (TIA) Register, with the most recent cholesterol measurement in the preceding 12 months, showing as ≤2.0 mmol/L if it was an LDL (Low-density Lipoprotein) cholesterol reading or ≤2.6 mmol/L if it was a non-HDL (High-density Lipoprotein) cholesterol reading. For multiple readings on the latest date the LDL reading takes priority.¹

CHOL004 - 44 points (increased by 28 points)

The 2025/2026 QOF reflects a continued commitment to the importance of cholesterol management in patients who have had a cardiovascular event, with a target of 2.0 LDL-C mmol/L or lower in those who have a recording of LDL-C in the preceding 12 months¹


CHD – Coronary Heart Disease; CKD – Chronic Kidney Disease; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein cholesterol; PAD – Peripheral Arterial Disease; QOF – Quality and Outcomes Framework; TIA – transient ischaemic attack

Reference: 1. National Health Service England. https://www.england.nhs.uk/wp-content/uploads/2025/03/quality-outcomes-framework-guidance-for-2025-26.pdf [Accessed April 2025].

NATIONAL GUIDANCE FOR LIPID MANAGEMENT FOR PRIMARY AND SECONDARY PREVENTION OF CARDIOVASCULAR DISEASE¹ (CONTINUED)

Extent of Lipid lowering with available therapies							
Approximate reduction in LDL-C							
Statin dose mg/day	5	10	20	40	80		
Fluvastatin			21%	27%	33%		
Pravastatin		20%	24%	29%			
Simvastatin		27%	32%	37%	42%		
Atorvastatin		37%	43%	49%	55%		
Rosuvastatin	38%	43%	48%	53%			
Atorvastatin + Ezetimibe 10 mg		52%	54%	57%	61%		

Adapted from NHS England 2024.1

- Rosuvastatin may be used as an alternative to atorvastatin if compatible with other drug therapy. Some people may need a lower starting dose (see BNF)
- Low/medium intensity statins should only be used if intolerance or drug interactions
- **Ezetimibe** when combined with any statin is likely to give greater reduction in non-HDL-C or LDL-C than doubling the dose of the statin
- PCSK9i (NICE TA393, TA394) alone or in combination with statins or ezetimibe produce an additional LDL-C reduction of approximately 50% (range: 25–70%)
- **Bempedoic acid** when combined with ezetimibe (TA694) produces an additional LDL-C reduction of approximately 28% (range: 22–33%)
- LEQVIO® (TA733) alone or in combination with statins or ezetimibe produces an additional LDL-C reduction of approximately 50% (range: 48–52%) but no clinical outcome evidence is currently available

The figure has been reproduced in full, with an excerpt relevant to the topic highlighted. There are no head-to-head studies between these products, therefore, no direct comparisons can be made. Novartis had no involvement in the development of this figure. Please consult the Summary of Product Characteristics and NICE TA733 before prescribing LEQVIO®.2.3

LEQVIO® is recommended as an option for treating primary hypercholesterolaemia (heterozygous familial and non-familial) or mixed dyslipidaemia as an adjunct to diet in adults. It is recommended only if: there is a history of any of the following cardiovascular events: acute coronary syndrome (such as myocardial infarction or unstable angina needing hospitalisation), coronary or other arterial revascularisation procedures, coronary heart disease, ischaemic stroke or peripheral arterial disease, and LDL-C concentrations are persistently 2.6 mmol/l or more, despite maximum tolerated lipid-lowering therapies when statins are not tolerated or are contraindicated, and the company provides LEQVIO® according to the commercial arrangement.³

BNF – British National Formulary; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein cholesterol; NHS – National Health Service; NICE – National Institute for Health and Care Excellence; PCSK9i – proprotein convertase subtilisin/kexin type 9 inhibitor

References: 1. National Health Service England. https://www.england.nhs.uk/aac/wp-content/uploads/sites/50/2020/04/lipid-management-pathway-version-7-March-2024.pdf [Accessed April 2025]. 2. LEQVIO® (inclisiran) Summary of Product Characteristics. 3. National Institute for Health and Care Excellence. https://www.nice.org.uk/guidance/ta733 [Accessed April 2025].

LIPID OPTIMISATION PATHWAY FOR SECONDARY PREVENTION IN PRIMARY CARE^{1,2}

Innovation Lipid optimisation pathway for secondary prevention in primary care / the community¹ Network Lipid lowering therapies should be offered to all patients with Obtain full Lipid Profile, liver transaminase, HbA1c, and eGFR Check established CVD1 Is the patient on high dose, high intensity statin³? (atorvastatin 80mg or rosuvastatin 20mg) Aim to achieve LDL-C and non-HCL-C targets as a minimum, triglyceride levels & manage greater reductions are encouraged No Yes · Lower targets are recommended post-acute event (please see according to Lipid optimisation pathway following an acute cardiovascular or national Initiate / increase to high dose high intensity statin^{2,3}, if possible and re-enforce lifestyle and diet peripheral disease event) guidance measures, using shared decision making and taking account of polypharmacy, comorbidity, and frailty Do not de-escalate therapy except where there are issues of tolerability or drug interactions · Where an individual qualifies for injectable therapies, as per Review within 2-3 months NICE technology appraisals, consider these in preference to Is LDL-C \leq 2mmol/L or non-HDL-C \leq 2.6mmol/L?¹ ezetimibe to prevent lipid levels being lowered but remaining above the LDL-C target and below thresholds for initiating Yes No At any point injectable therapies consider Consider FH If TC>7.5mmol/L or LDL-C>4.9mmol/L or non-HDL-Check adherence to statin and lifestyle measures1 icosapent ethyl C>5.9mmol/L with a personal or family history of confirmed Shared-decision about escalating lipid-lowering treatment in addition to CHD (<60 years) and no secondary causes after an informed discussion about options, benefits and risks statins +/- other This pathway aligns to NICE guidance NG238 lipid lowering 1. NICE NG238: Cardiovascular disease: risk assessment and therapies if reduction, including lipid modification Assess eligibility for injectable If statin intolerant - offer Consider adding Consider fasting 2. Dose may be limited, for example if: ezetimibe 10mg ezetimibe ezetimibe. Reassess within triglycerides therapies: CKD: eGFR<60ml/min - recommended starting dose, 2-3 months and, if not daily to maximum 10mg Inclisiran - if LDL-C ≥ ≥1.7 mmol/L atorvastatin 20mg achieving target, consider AND LDL > 1.04 tolerated statin to daily and 2.6mmol/L · Drug interactions bempedoic acid and reduce CV risk. reassess mmol/L and · Drug intolerance even where the PCSK9i (mAB)4 if LDL-C > injectable therapies in line ≤2.6 mmol/L within 2-3 Frailty with eligibility criteria lipid target has months 4mmol/L (or > 3.5mmol/L if · End of Life been achieved 1 FH or recurrent events) 3. See statin intensity table. Use shared-decision making and incorporate patient preference in treatment & care decisions Review annually, including obtaining a full lipid profile, assessing treatment to target, adherence to therapy 4. NICE Guidance: Evolocumab, Alirocumab, Inclisiran, Bempodoic and offering support for diet and other lifestyle measures Acid, Icosapent Ethyl

Guidance provided by NHS on the "Lipid optimisation pathway: secondary prevention in primary care and the community":

Health

Where an individual qualifies for injectable therapies, as per NICE technology appraisals, consider these in preference to ezetimibe to prevent lipid levels being lowered but remaining above the LDL-C target and below thresholds for initiating injectable therapies.²

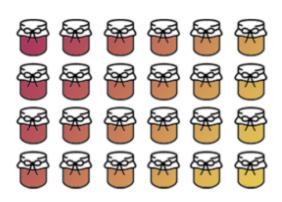
Adapted from Health Innovation Network 2024 and NHS England 2024. 1,2

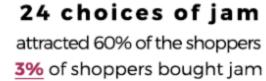
Reproduced from Health Innovation Network 2024.1 Novartis had no involvement in the development of this pathway. LEQVIO® may not be indicated and/or recommended for all patients in this pathway. Please consult the Summary of Product Characteristics and the NICE TAG before prescribing.

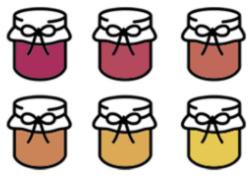
NHS - National Health Service: NICE - National Institute for Health and Care Excellence

Reference: 1. Health Innovation Network. https://thehealthinnovationnetwork.co.uk/wp-content/uploads/2024/06/Lipid-optimisation-pathway-for-secondary-prevention-in-primary-care-and-the-community.pdf [Accessed April 2025]. 2. National Health Service England. https://www.england.nhs.uk/long-read/lipid-optimisation-pathway-secondary-prevention-in-primary-care-and-the-community [Accessed April 2025].

The Paradox of Choice

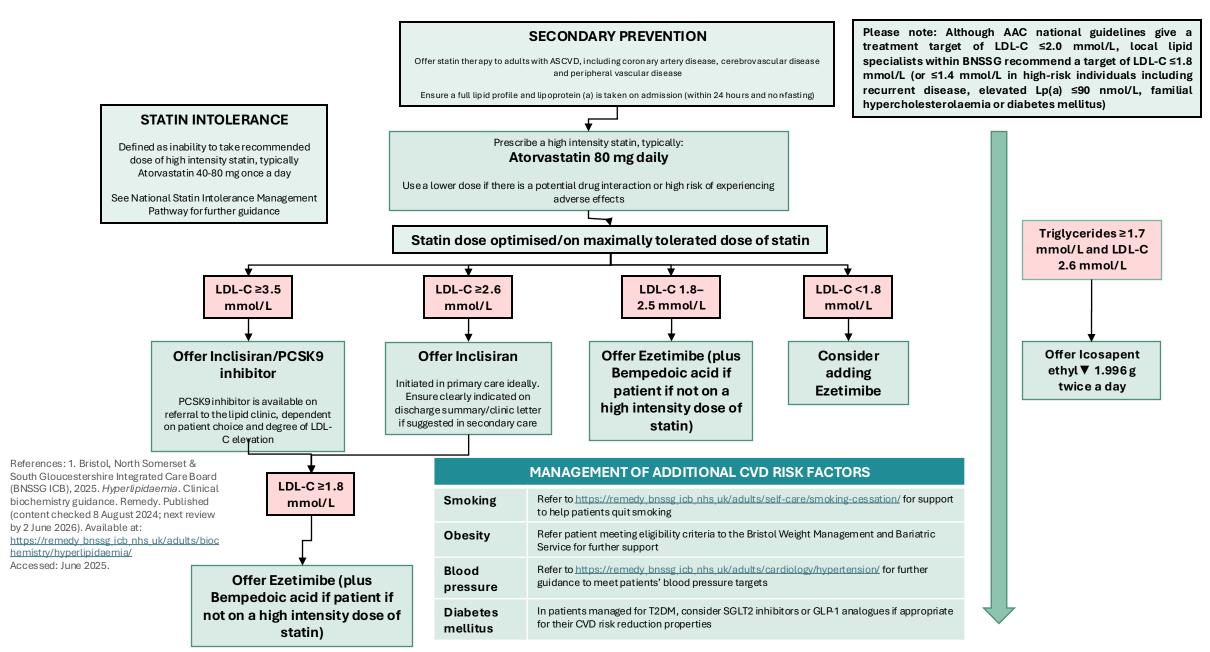

PERSONALITY PROCESSES AND INDIVIDUAL DIFFERENCES


When Choice is Demotivating: Can One Desire Too Much of a Good Thing?


Sheena S. Iyengar Columbia University Mark R. Lepper Stanford University

Current psychological theory and research affirm the positive affective and motivational consequences of having personal choice. These findings have led to the popular notion that the more choice, the better—that the human ability to manage, and the human desire for, choice is unlimited. Findings from 3 experimental studies starkly challenge this implicit assumption that having more choices is necessarily more intrinsically motivating than having fewer. These experiments, which were conducted in both field and laboratory settings, show that people are more likely to purchase gournet jams or chocolates or to undertake optional class essay assignments when offered a limited array of 6 choices rather than a more extensive array of 24 or 30 choices. Moreover, participants actually reported greater subsequent satisfaction with their selections and wrote better essays when their original set of options had been limited. Implications for future research are discussed.

Too many choices?

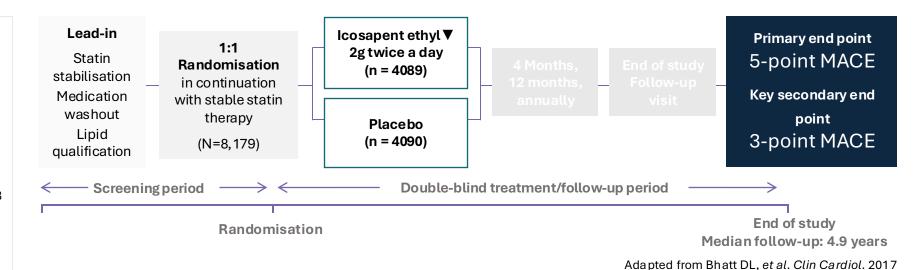


6 choices of jam attracted 40% of the shoppers 30% of shoppers bought jam

Management of lipids in secondary prevention¹

NICE TA [805] - (2022)

Icosapent ethyl with statin therapy for reducing the risk of cardiovascular events in people with raised triglycerides


1 Recommendations

- 1.1 Icosapent ethyl is recommended as an option for reducing the risk of cardiovascular events in adults. It is recommended if they have a high risk of cardiovascular events and raised fasting triglycerides (1.7 mmol/litre or above) and are taking statins, but only if they have:
 - established cardiovascular disease (secondary prevention), defined as a history of any of the following:
 - acute coronary syndrome (such as myocardial infarction or unstable angina needing hospitalisation)
 - coronary or other arterial revascularisation procedures
 - coronary heart disease
 - o ischaemic stroke
 - o peripheral arterial disease, and
 - low-density lipoprotein cholesterol (LDL-C) levels above 1.04 mmol/litre and below or equal to 2.60 mmol/litre.

REDUCE-IT: Trial design

Key inclusion criteria

- Statin-treated men and women aged ≥45 years
- Established CVD (~70% of patients) or DM +≥1 risk factor
- TG ≥1.69 and <5.63 mmol/L (135-500 mg/dL)*
- LDL-C >1.06 and ≤2.59 mmoVL (40-100 mg/dL)

5-point MACE

was defined as a composite of: nonfatal MI, nonfatal stroke, CV death, hospitalisation for unstable angina, or coronary revascularisation.^{1,2}

3-point MACE

and Bhatt DL, et al. N Engl J Med. 2019.^{1,2}

was defined as a composite of: nonfatal MI, nonfatal stroke, and CV death.^{1,2}

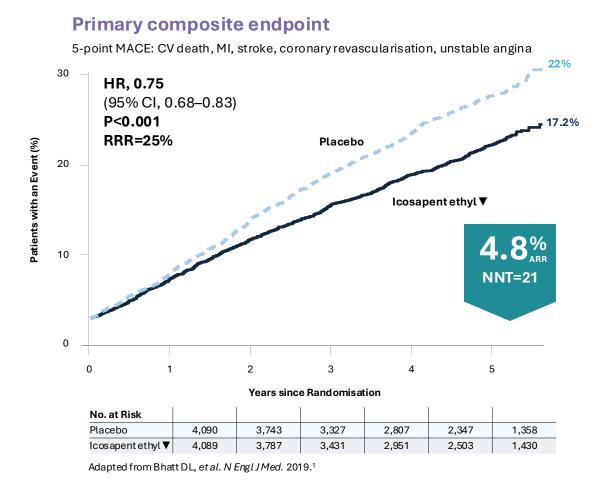
REDUCE-IT ClinicalTrials.gov number, NCT01492361.

*Due to the variability of TG, a 10% allowance existed in the initial protocol, which permitted patients to be enrolled with qualifying TGs ≥ 1.69 mmol/L. Protocol amendment 1 (May 2013) changed the lower limit of acceptable triglycerides from 1.69 mmol/L to 2.26 mmol/L, with no variability allowance.

CV, cardiovascular; CVD, cardiovascular disease; DM, diabetes mellitus; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event; MI, myocardial infarction; RCT, randomised controlled trial; TG, triglyceride.

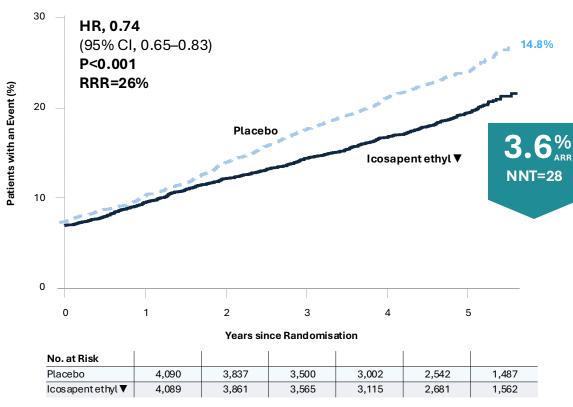
REDUCE-IT: Baseline characteristics¹

Characteristics ¹	Icosapent ethyl ▼ (n=4,089)	Placebo (n=4,090)		
T2DM, n (%)	2,367 (57.9%)	2,363 (57.8%)		
TG (mmol/L), Median (Q1–Q3)/(mg/dL), Median (Q1-Q3)	2.5 (2.0–3.1)/216.5 (176.5-272)	2.4 (2.0–3.1)/216.0 (175.5-274)		
HDL-C (mmol/L), Median (Q1–Q3)/Median (Q1-Q3)	1.0 (0.9–1.2)/40.0 (34.5-46.0)	1.0 (0.9–1.2)/40.0 (35.0-46.0)		
LDL-C (mmol/L), Median (Q1–Q3)/Median (Q1-Q3)	1.9 (1.6–2.3)/74.0 (61.5-88.0)	2.0 (1.6–2.3)/76.0 (63.0-89.0)		
TG Category, n (%)				
<1.7 mmol/L (150 mg/dL)	412 (10.1%)	429 (10.5%)		
1.7–<2.3 mmol/L (150-200 mg/dL)	1,193 (29.2%)	1,191 (29.1%)		
≥2.3 mmol/L (>200 mg/dL)	2,481 (60.7%)	2,469 (60.4%)		
hsCRP (mg/L)*	2.2	2.1		


Adapted from Bhatt DL, et al. N Engl J Med. 2019.1

^{*}Median observed value.

HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; T2DM, type 2 diabetes mellitus.


Statistically significant relative reductions in the risk of 5-point and 3-point MACE vs placebo¹

All patients were on background statin therapy1

Key secondary composite endpoint

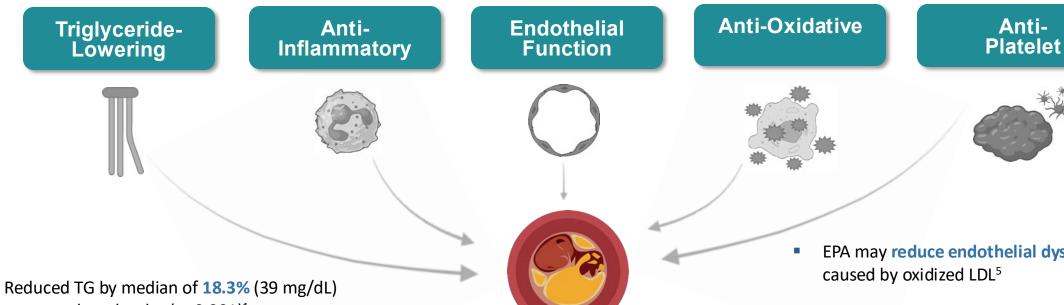
3-point MACE: CV death, MI, stroke

Adapted from Bhatt DL, et al. N Engl J Med. 2019.1

ARR, absolute risk reduction; CI, confidence interval; CV, cardiovascular; HR, hazard ratio; MACE, major adverse cardiovascular event; MI, myocardial infarction; NNT, number needed to treat; RRR, relative risk reduction.

Statistically significant reductions in the rates of all hierarchically tested endpoints up to death from any cause vs placebo¹

Endpoint	HR (95% CI)	Icosapent ethyl ▼ n/N (%)	Placebo n/N (%)	HR (95% CI)	RRR	ARR	P-value
Primary Composite (ITT)	-=-	705/4,089 (17.2%)	901/4,090 (22.0%)	0.75 (0.68–0.83)	25% ▼	4.8%	<0.001
Key Secondary Composite (ITT)		459/4,089 (11.2%)	606/4,090 (14.8%)	0.74 (0.65–0.83)	26% ▼	3.6%	<0.001
Cardiovascular Death or Nonfatal Myocardial Infarction		392/4,089 (9.6%)	507/4,090 (12.4%)	0.75 (0.66–0.86)	25% ▼	2.8%	<0.001
Fatal or Nonfatal Myocardial Infarction		250/4,089 (5.3%)	355/4,090 (8.7%)	0.69 (0.58–0.81)	31% ▼	2.6%	<0.001
Urgent or Emergent Revascularisation		216/4,089 (5.3%)	321/4,090 (7.8%)	0.65 (0.55–0.78)	35% ▼	2.5%	<0.001
Cardiovascular Death		174/4,089 (4.3%)	213/4,090 (5.2%)	0.80 (0.66-0.98)	20% ▼	0.9%	0.03
Hospitalisation for Unstable Angina		108/4,089 (2.6%)	157/4,090 (3.8%)	0.68 (0.53–0.87)	32%▼	1.2%	0.002
Fatal or Nonfatal Stroke		98/4,089 (2.4%)	134/4,090 (3.3%)	0.72 (0.55–0.93)	28%▼	0.9%	<0.001
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke		549/4,089 (13.4%)	690/4,090 (16.9%)	0.77 (0.69–0.86)	23% ▼	3.5%	<0.001
Total Mortality		274/4,089 (6.7%)	310/4,090 (7.6%)	0.87 (0.74–1.02)	NS	NS	NS


Placebo Better

ARR, absolute risk reduction; CI, confidence interval; HR, hazard ratio; ITT, intention-to-treat; RRR, relative risk reduction.

Icosapent ethyl ▼ Better

Adapted from Bhatt DL, et al. N Engl J Med. 2019.1

IPE ▼ reduces risk of MACE most likely by multiple mechanisms.

- compared to placebo (p<0.001)1
- IPE significantly decreased levels of markers of inflammation: Ox-LDL, Lp-PLA2, and hsCRP²
- IPE displaced pro-inflammatory arachidonic acid towards non- or anti-inflammatory mediators³
- Reduced expression of multiple pro-inflammatory genes involved in atherosclerosis⁴

EPA may reduce endothelial dysfunction caused by oxidized LDL⁵

Anti-

- Intercalation of EPA into mitochondrial membranes has antioxidant effects⁶
- EPA shows antioxidant effects in model membranes⁶
- EPA reduces platelet levels, activation, aggregation, and function⁶
- EPA-rich omega 3 fatty acids mixture reduced platelet aggregation by ~12%⁷

MACE=major adverse cardiovascular events

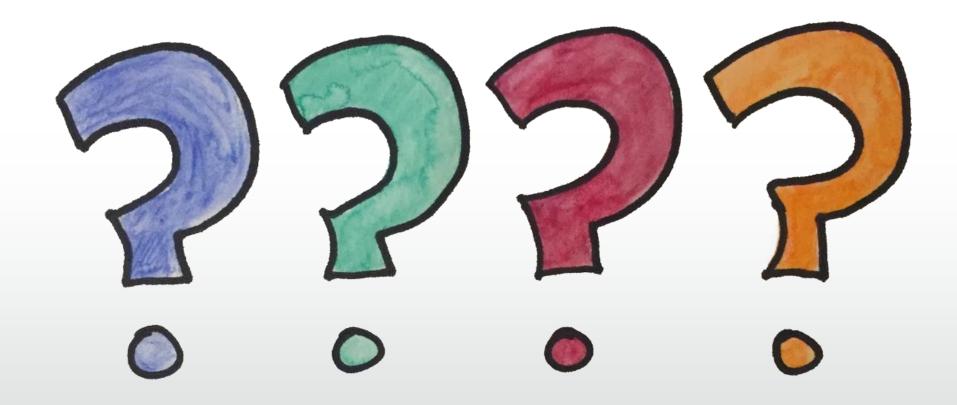
Figure a dapted from Bae JH, et al. Advances in Nutrition. 2023. https://doi.org/10.1016/j.advnut.2023.03.014

Our Role

Recognise "red" flags but also we need to be confident with Lipids and CV risk reduction.

Ensure Lifestyle changes discussed, and secondary causes addressed

Consider further treatment for CV risk reduction with LDL targets and (EPA)


Distilling +++information into a clear message

Considering tablet / treatment burden, explaining why take medicines despite feeling no different

QUESTIONS?

