Post transplantation diabetes: clinical challenges

Prof. Adnan Sharif

Consultant Nephrologist & Transplant Physician, University Hospitals Birmingham Honorary Professor, University of Birmingham

Adnan.Sharif@uhb.nhs.uk; @AdnanSharif1979; @adnan-sharif.bsky.social

Disclosures

• Advisory Board:

- Sandoz
- Astellas
- Atara Biotherapeutics
- Novartis
- Takeda
- Chiesi
- Alexion
- Mallinckrodt

• Honorarium/Grant funding:

- Chiesi
- Napp Pharmaceuticals
- Sandoz
- UpToDate.com
- Takeda
- Trustee
 - Global Kidney Foundation
 - Give A Kidney
 - Metchley Park Medical Society

Clinical challenges

Can I prevent PTDM in my high cardio-metabolic risk kidney transplant candidate? How should I manage a new kidney transplant patient who develops postop PTDM?

Can I use SGLT2i for my kidney transplant patient with PTDM?

Can I use GLP-1 agonists for my kidney transplant patient with PTDM?

Why PTDM is common after transplantation

Non-modifiable

- Age
- Male sex?
- Deceased-donor kidney?
- Genetic
- HLA matching/type
- Non-Caucasian ethnicity
- Family history of diabetes
- Gestational diabetes
- ADPKD
- Hepatitis C

Obesity

- Rejection episodes
- Metabolic syndrome
- Serum uric acid level?
- Low androgen levels in males

Modifiable

- CMV infection post-transplant
- Glucose intolerance
- Anti-hypertensives
- Uric acid/Mg abnormality posttransplant
- Immunosuppression

Sharif A, Baboolal K. Nat Rev Nephrol 2010; 6: 415-423 Sharif A. Curr Opin Nephrol Hypertens 2012; 21: 574-9

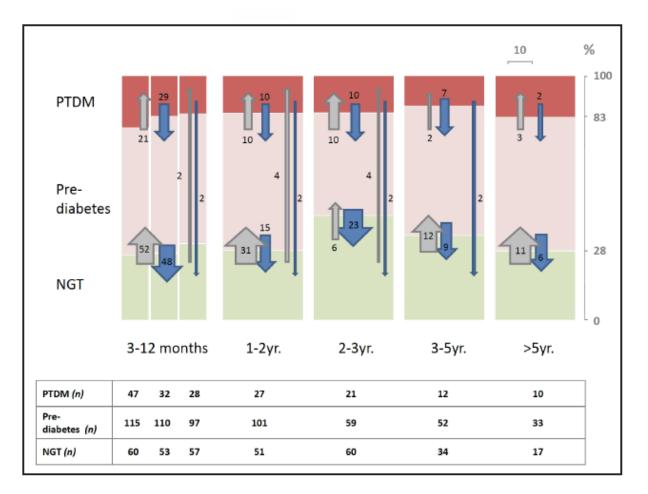
Why PTDM is common after transplantation

Non-modifiable

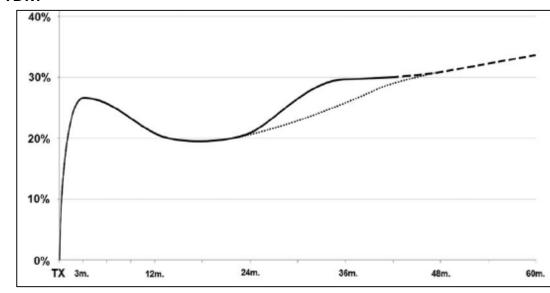
- Age
- Male sex?
- Deceased-donor kidney?
- Genetic
- HLA matching/type
- Non-Caucasian ethnicity
- Family history of diabetes
- Gestational diabetes
- ADPKD
- Hepatitis C

Obesity

- Rejection episodes
- Metabolic syndrome
- Serum uric acid level?
- Low androgen levels in males


Modifiable

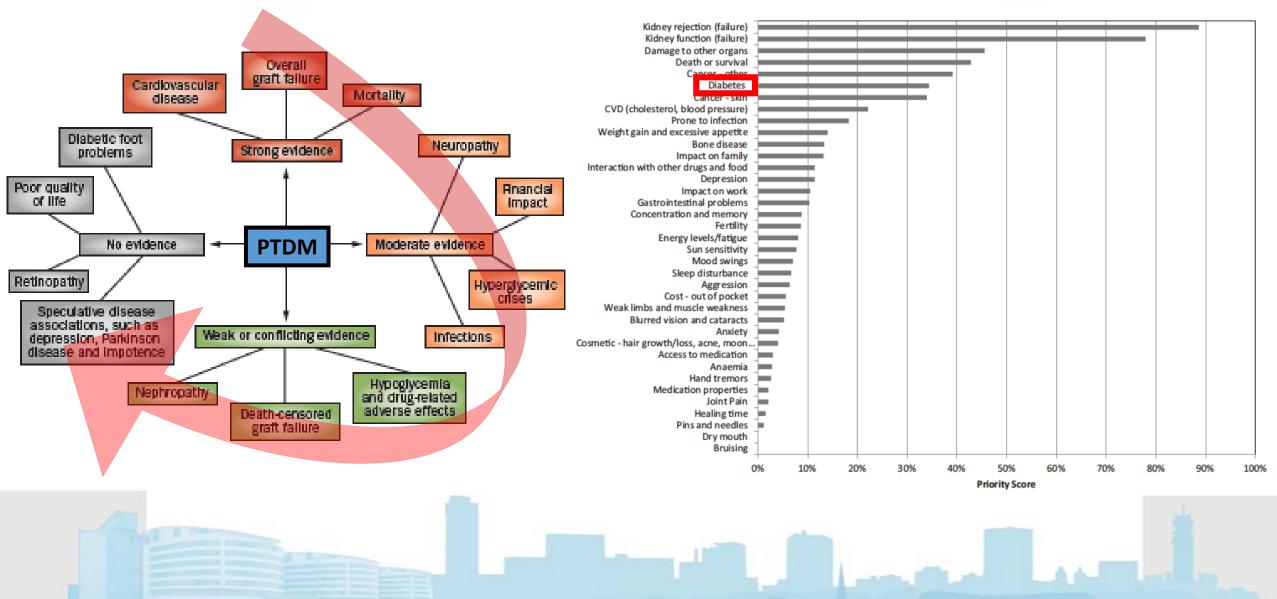
- CMV infection post-transplant
- Glucose intolerance
- Anti-hypertensives
- Uric acid/Mg abnormality posttransplant


Immunosuppression

Sharif A, Baboolal K. Nat Rev Nephrol 2010; 6: 415-423 Sharif A. Curr Opin Nephrol Hypertens 2012; 21: 574-9

Dynamic and bimodal nature of post-transplant glucose metabolism

PTDM



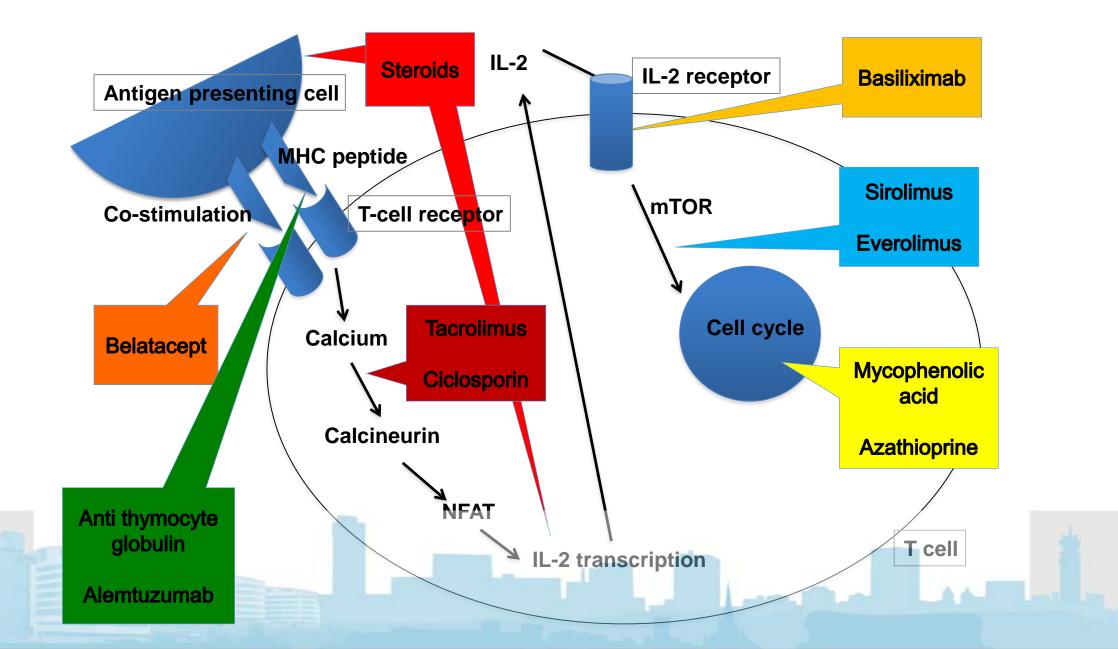
Time from transplant

Porrini et al. NDT 2016

PTDM is associated with inferior post-transplant outcomes

Sharif A, Baboolal K. Nat Rev Nephrol 2012

Howell et al. AJKD 2012

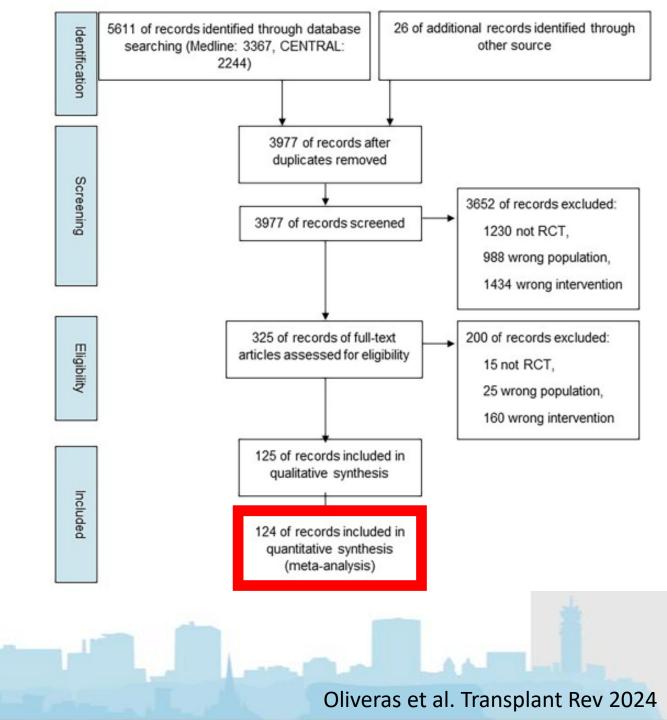

Clinical challenges

Can I prevent PTDM in my high cardio-metabolic risk kidney transplant candidate? How should I manage a new kidney transplant patient who develops postop PTDM?

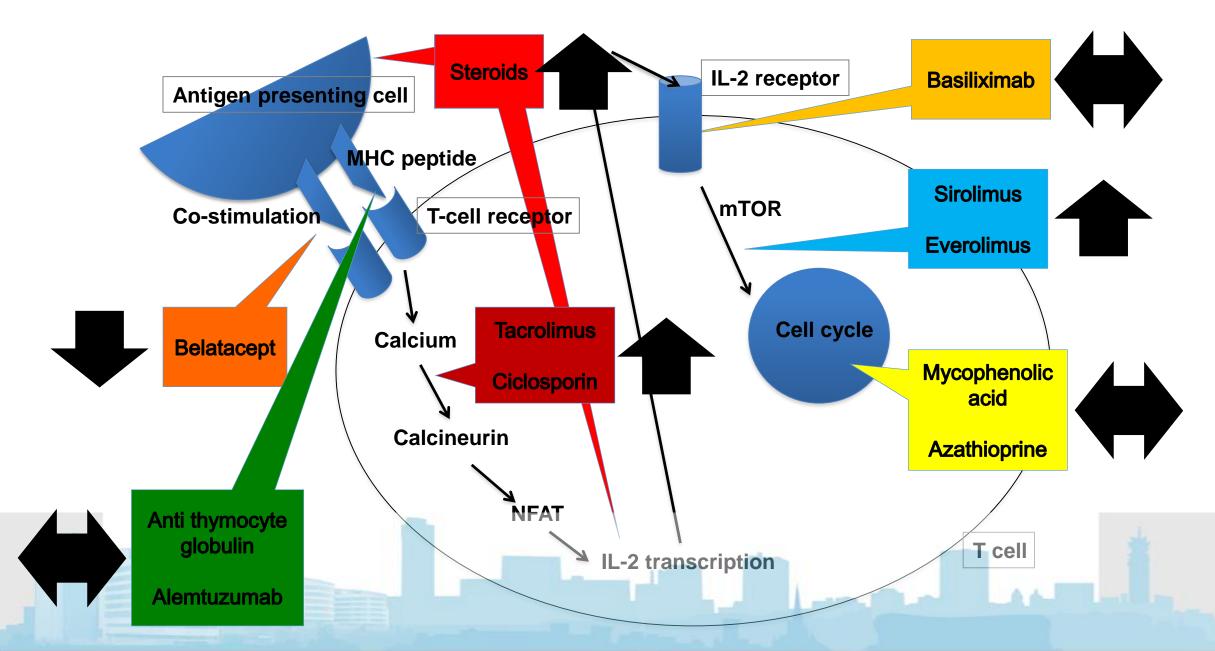
Can I use SGLT2i for my kidney transplant patient with PTDM?

Can I use GLP-1 agonists for my kidney transplant patient with PTDM?

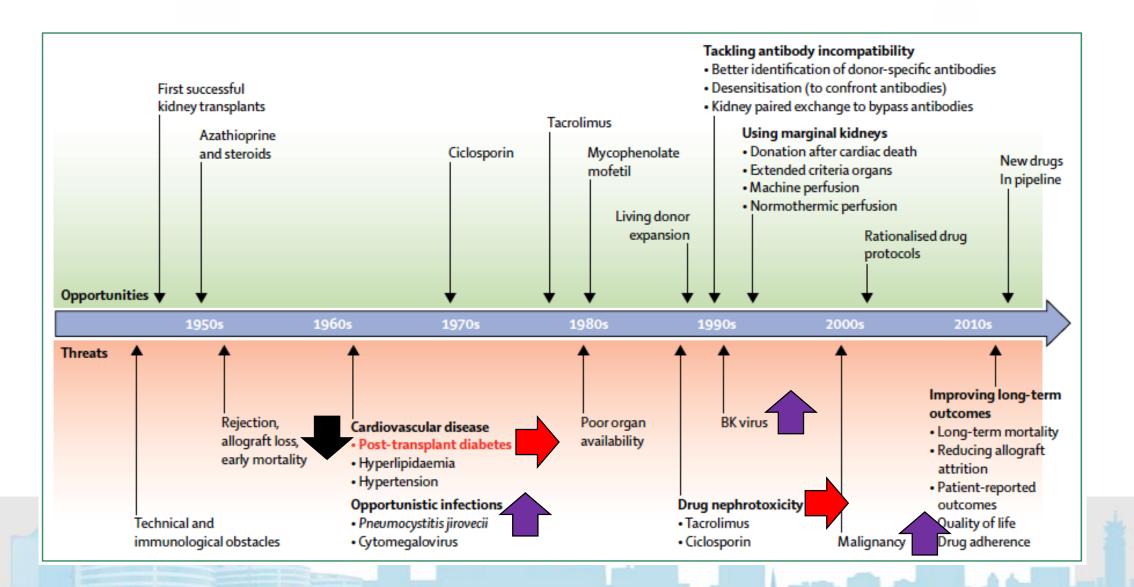
Burgeoning armamentarium of immunosuppression


Contents lists available at ScienceDirect Transplantation Reviews journal homepage: www.elsevier.com/locate/trre

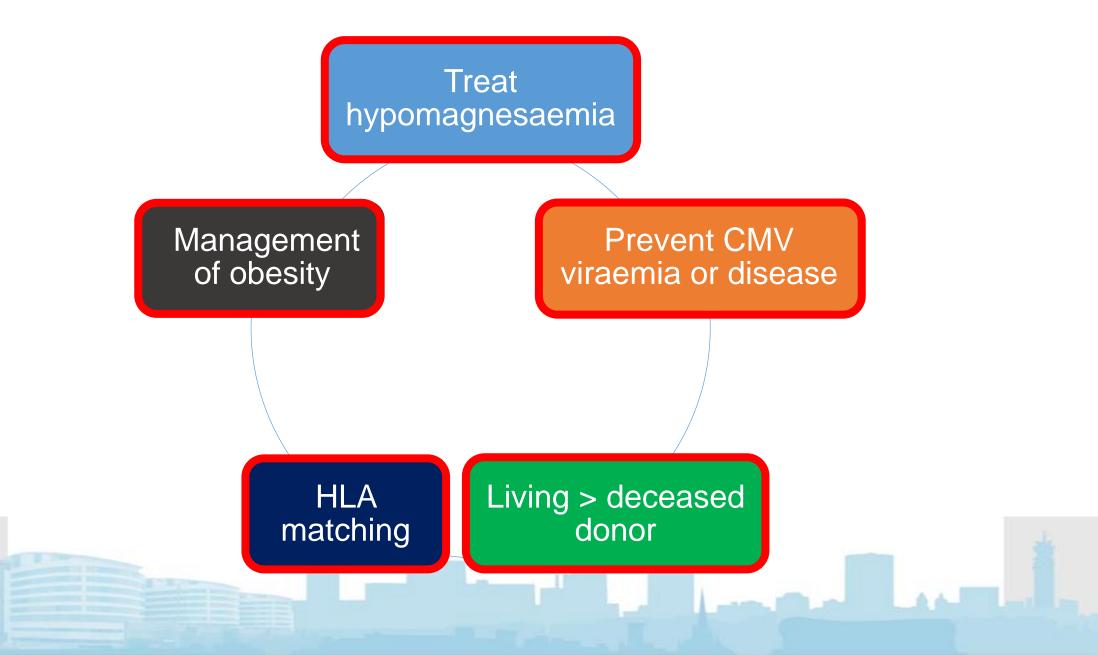
Encare J. Enachtik John Piecest


Review article

Immunosuppressive drug combinations after kidney transplantation and post-transplant diabetes: A systematic review and meta-analysis


Laia Oliveras ^{a,g}, Ana Coloma ^a, Nuria Lloberas ^b, Luis Lino ^a, Alexandre Favà ^a, Anna Manonelles ^{a,g}, Sergi Codina ^{a,g}, Carlos Couceiro ^{a,g}, Edoardo Melilli ^{a,g}, Adnan Sharif ^{c,h}, Manfred Hecking ^d, Martina Guthoff ^{e,i}, Josep M. Cruzado ^{a,g}, Julio Pascual ^{f,**,1}, Nuria Montero ^{a,g,*,1}

Burgeoning armamentarium of immunosuppression



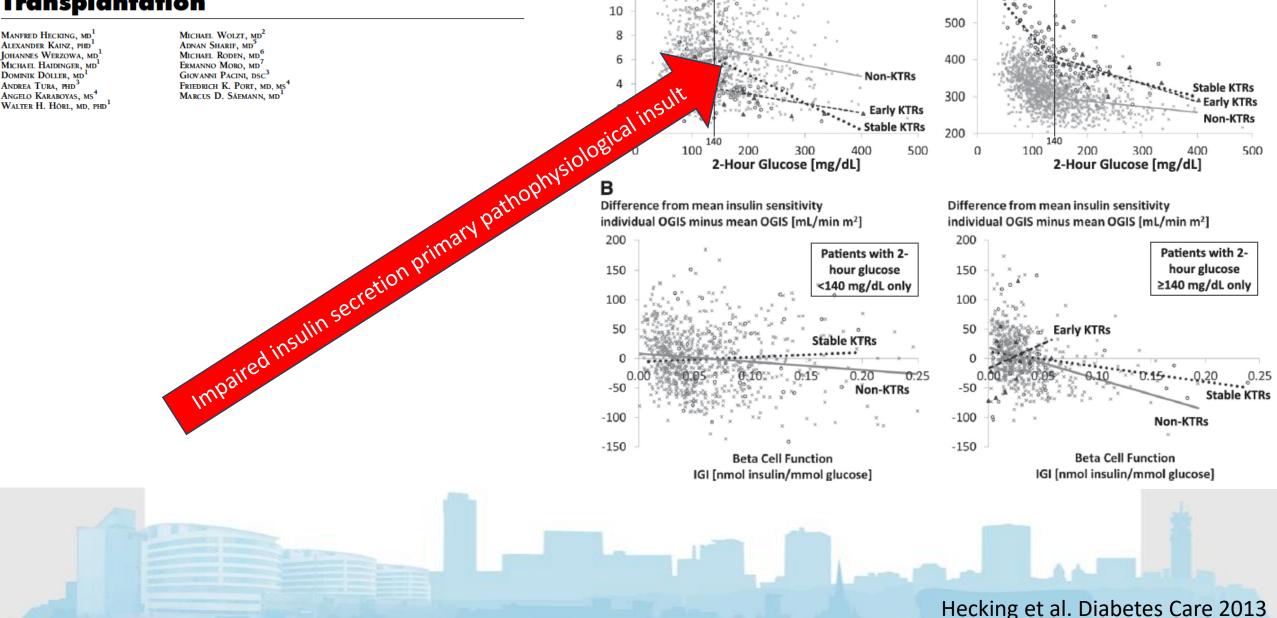
PTDM in the context of competing risks after kidney transplantation

Sharif A, Cohney S. Lancet Diab Endocrinol 2016

Are there any ways to mitigate PTDM?

Clinical challenges

Can I prevent PTDM in my high cardio-metabolic risk kidney transplant candidate?


How should I manage a new kidney transplant patient who develops postop PTDM?

Can I use SGLT2i for my kidney transplant patient with PTDM?

Can I use GLP-1 agonists for my kidney transplant patient with PTDM?

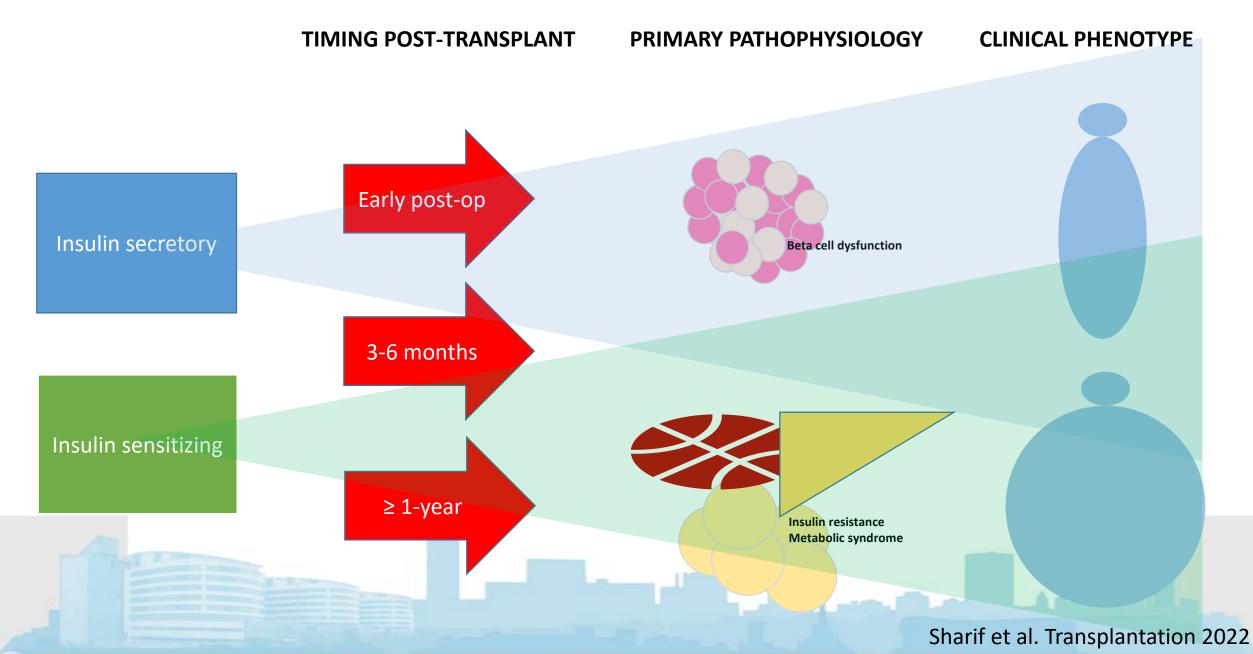
Glucose Metabolism After Renal Transplantation

Α

12

Insulin Secretion

AUC insulin [mU/mL 2h]


Analysis of OGTT-Derived Measures: KTRs versus General Population

Insulin Sensitivity

OGIS [mL/min m²]

600

Therapeutic options based upon underlying PTDM characteristics

TIP: Study Design

Treat-to-target trial of Basal Insulin in Post Transplant Hyperglycemia Efficacy and Safety of a Novel Protocol in Renal Transplant Recipients Receiving a Tacrolimus-based Immunosuppression

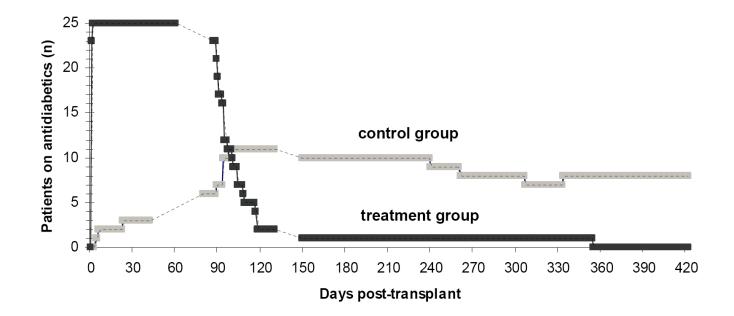
Inclusion: NTX, Tacrolimus, No history of DM, Informed Consent

Daily Measurements of Blood Glucose

(At least): Fasting, pre-lunch, pre-supper, post-supper

2 x 25 patients, Randomisation into 2 Study Arms

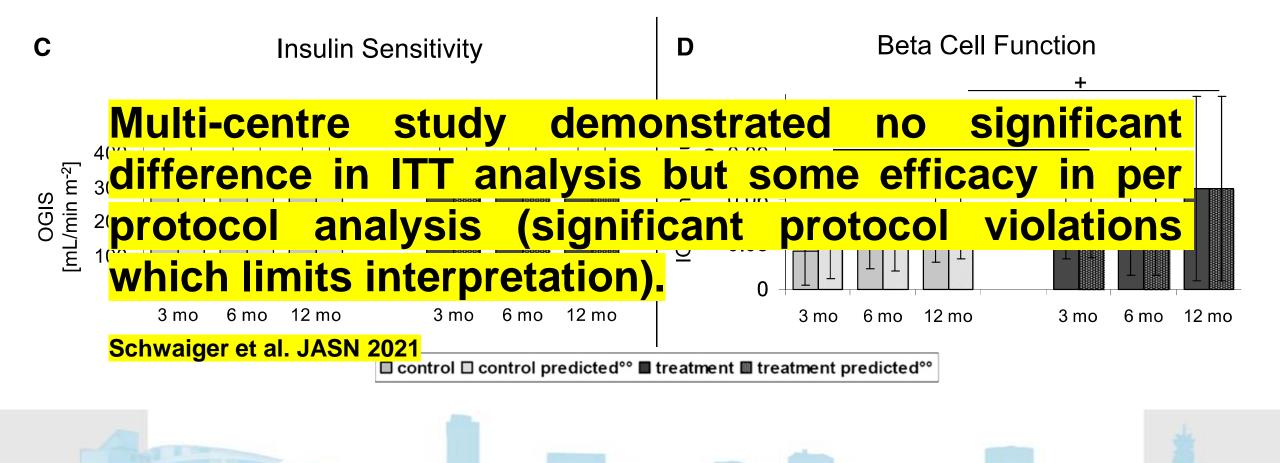
Arm A (treatment):


Treatment starts when evening
BG ≥140 mg/dl

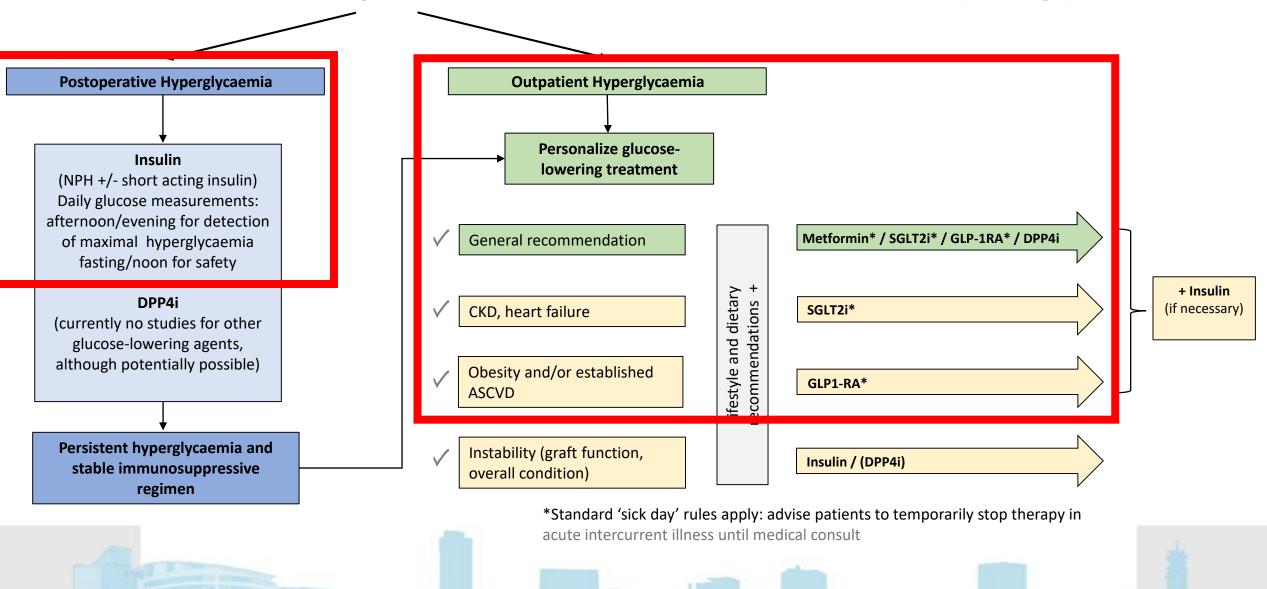
- BG target level: 110-120 mg/dl
- Treatment with long acting insulin (Insulatard®)

Arm B (control):

- Corrections at the latest when BG
- > 250 mg/dl
- BG target level: none, but 250 mg/dl not accepted
- Conventional BG lowering therapy, according to decisions of the ward


Early insulin for post-op hyperglycaemia prevents PTDM at 1-year

Odds Ratios [95% CI]


3 months	0.36 [0.11-1.16]	0.29 [0.08-1.09]
6 months	0.13 [0.03-0.53]	0.56 [0.16-1.92]
12 months	0.07 [0.00-0.05]	0.51 [0.16-1.61]
Overall ^{^^}	0.27 [0.10-0.72]	0.43 [0.16-1.14]

Benefit in treatment group due to improved beta-cell function

Hecking et al. J Am Soc Nephrol 2012

Glucose-Lowering Treatment for Post-Transplant Hyperglycaemia

Sharif et al. NDT 2024

Clinical challenges

Can I prevent PTDM in my high cardio-metabolic risk kidney transplant candidate? How should I manage a new kidney transplant patient who develops postop PTDM?

Can I use SGLT2i for my kidney transplant patient with PTDM?

Can I use GLP-1 agonists for my kidney transplant patient with PTDM? RESEARCH

© OPEN ACCESS Benefits and harms of drug treatment for type 2 diabetes: (
Check for updates
systematic review and network meta-analysis of randomise

systematic review and network meta-analysis of randomised controlled trials

Interventions	All cause death (OR, 95%CI)	Cardiovascular death (OR, 95%Cl)	Non-fatal myocardial infarction (OR, 95%CI)	Non-fatal stroke (OR, 95%CI)	Admission to hospital for heart failure (OR, 95%CI)	End stage kidney disease* (OR, 95%CI)	Health related quality of life score (OR, 95%CI)	Severe hypoglycaemia (OR, 95%Cl)	Drug specific adverse events (OR, 95%CI)	
SGLT-2 inhibitors	0.88 (0.83 to 0.94)	0.86 (0.80 to 0.94)	0.90 (0.82 to 0.98)	0.99 (0.88 to 1.11)	0.66 (0.60 to 0.73)	0.61 (0.55 to 0.67)	0.30 (0.10 to 0.49)	0.90 (0.79 to 1.02)	Genital infection 3.30 (2.88 to 3.78)	
									Amputation 1.27 (1.01 to 1.61)	SGLT-2 inhibitors = cardio-renal benefits
									Ketoacidosis 2.07 (1.44 to 2.98)	
GLP-1 receptor agonists	0.88 (0.82 to 0.93)	0.87 (0.81 to 0.94)	0.91 (0.85 to 0.98)	0.85 (0.77 to 0.94)	0.91 (0.83 to 0.99)	0.83 (0.75 to 0.92)	0.17 (0.07 to 0.27)	0.98 (0.90 to 1.06)	Severe gastrointestinal events 1.97 (1.39 to 2.80)	GLP-1 receptor agonists = cardio-renal benefits
Non-steroidal MRAs		0.88 (0.75 to 1.02)	0.91 (0.74 to 1.12)	1.00 (0.82 to 1.22)	0.78 (0.66 to 0.92)	0.83 (0.75 to 0.92)	-	0.64 (0.43 to 0.96)	Hyperkalaemia leading to hospital admission 5.92 (3.02 to 11.62)	
Tirzepatide	0.83 (0.48 to 1.44)	1.00 (0.35 to 2.85)	0.69 (0.08 to 6.10)	-	0.63 (0.16 to 2.39)	0.68 (0.09 to 4.84)	0.39 (0.13 to 0.65)	1.13 (0.42 to 3.02)	Severe gastrointestinal events 4.59 (1.89 to 11.14)	
Metformin	0.84 (0.67 to 1.04)	0.95 (0.48 to 1.88)	0.86 (0.68 to 1.09)	0.97 (0.71 to 1.33)	1.45 (0.28 to 7.36)	1.61 (0.36 to 7.24)	0.04 (-0.25 to 0.33)	1.73 (0.89 to 3.37)	Severe gastrointestinal events 2.22 (0.64 to 7.71)	
α-glucosidase inhibitors	0.89 (0.30 to 2.61)	0.99 (0.21 to 4.70)	0.33 (0.06 to 1.92)	9.44 (0.76 to 116.58)	3.25 (0.13 to 82.49)	-	0.03 (-0.34 to 0.39)	1.30 (0.31 to 5.43)	Severe gastrointestinal events 3.40 (0.30 to 38.15)	Everything else = majority have no cardio-renal
Thiazolid- inediones	0.95 (0.83 to 1.09)	0.93 (0.77 to 1.12)	0.97 (0.81 to 1.15)	0.85 (0.70 to 1.03)	1.54 (1.27 to 1.88)	0.69 (0.37 to 1.28)	0.20 (-0.13 to 0.52)	1.42 (0.97 to 2.10)	-	benefits
DPP-4 inhibitors	1.01 (0.95 to 1.08)	1.00 (0.92 to 1.09)	1.01 (0.92 to 1.11)	0.91 (0.80 to 1.03)	1.05 (0.95 to 1.16)	1.04 (0.93 to 1.16)	0.03 (-0.12 to 0.17)	1.11 (1.00 to 1.23)	-	
Sulfonylureas	1.10 (0.97 to 1.26)	1.01 (0.83 to 1.23)	1.00 (0.83 to 1.22)	1.05 (0.84 to 1.32)	0.99 (0.79 to 1.23)	0.68 (0.37 to 1.24)	0.23 (-0.19 to 0.64)	5.22 (3.88 to 7.01)	-	
Meglitinides	1.58 (0.51 to 4.92)	0.64 (0.11 to 3.69)	0.28 (0.05 to 1.60)	1.71 (0.26 to 11.40)	-	-	0.17 (-0.29 to 0.63)	3.21 (0.96 to 10.75)	-	
	-/2									

Shi et al. BMJ 2023

Clinical challenges

Can I prevent PTDM in my high cardio-metabolic risk kidney transplant candidate? How should I manage a new kidney transplant patient who develops postop PTDM?

Can I use SGLT2i for my kidney transplant patient with PTDM?

Can I use GLP-1 agonists for my kidney transplant patient with PTDM?

Prospective post-transplant SGLT-2 inhibitor studies

Study	Study size and design	Duration	Intervention/ Comparator	Primary outcome / Main outcome	Primary outcome resu	Its / Outcome results		
Schwaiger et al. JASN 2019	nature co	mmunicati	ons Nat Commun	15 , 10043 (2024).	6	'ived 2hPG increased during 4 (p=ns), demonstrating clinically		
lalden et al. Diabetes	Article			-	.org/10.1038/s41467-024-54171-8	echnical error), median change er 24 weeks of empagliflozin		
are 2019 Aahling et al. Kidney Jood Pres Res 2019				2 inhibitor splant recip		dian HbA1c decreased		
Shah et al. Indian J Nephrol 2019	Received: 15 Marc	h 2024		ng Chang², Jui-Yi Chen ወ ^{3,4} , H eff S. Chueh ወ ^{1,2,9,12} ⊠ & Vin-C		re and HbA1c, tacrolimus		
Sanchez Fructuoso et	Accepted: 5 Nove	mber 2024		err S. Chuen @ 👐 🖂 & vin-C		t over 6 months, the most s). In 10% patients, SGLT2i wer		
al. CKJ 2023	T2DM; multicenter, prospective, observational (interventional)		2 4 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	infections (UTIs) and/or mycoses in diabetic kidney transplant recipients (DKTRs) placed on SGLT2i treatment.	• • • •	UTI). However, in a post-hoc milar between DKTRs treated wit red with non-DKTRs (17.9% versu asting glycemia, HbA1c uric acid, b lower after SGLT2i treatment;		

Sharif et al. NDT 2024

SGLT-2 inhibitor studies in progress (1)

Three strata of patients will be included:

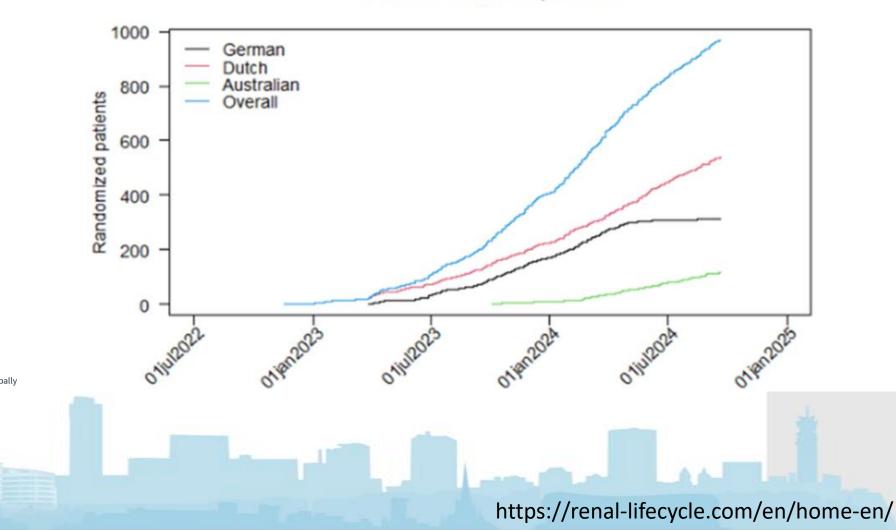
- 1. Patients with an eGFR ≤25 mL/min/1.73m² (non-dialysis or living with a kidney transplant);
- 2. Dialysis patients with residual diuresis ≥500 mL/24 h (including haemodialysis and peritoneal dialysis);
- 3. Renal transplant recipients with an eGFR \leq 45 mL/min/1.73m².

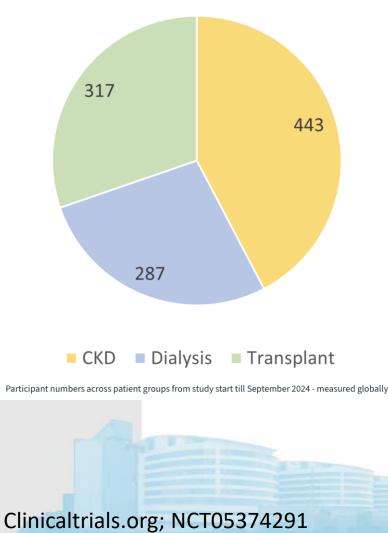
Expectation

Dapagliflozin reduces clinical end points (all-cause mortality, renal failure, and heart failure-related hospitalizations) in patients with stage 4 or 5 CKD, dialysis patients, and renal transplant recipients with and without type 2 diabetes.

Number of participants

1500 (total study total study duration 48 months but trial is endpoint-driven and will be terminated when 468 primary composite endpoints have occurred).


Clinicaltrials.org; NCT05374291


https://renal-lifecycle.com/en/home-en/

SGLT-2 inhibitor studies in progress (1)

Total Randomized patients

SGLT-2 inhibitor studies in progress (2)

Renal And Cardiovascular Protection With Sglt2 Inhibition In Kidney Transplant Recipients (RENAISSANCE)

"We hypothesize that for adult KTRs who are \geq 6 months posttransplant, use of SGLT2*i* compared with placebo will be safe, well tolerated, and associated with significant reductions in death, deterioration of transplant kidney function and major adverse cardiovascular events (myocardial infarction [MI], stroke and HF). We plan a randomized trial (n=900) to assess the efficacy and safety of SGLT2*i* for adult KTRs."

Aim 1 - To determine efficacy of SGLT2i to reduce a hierarchical composite defined in hierarchical order as: (1) allcause mortality, (2) kidney transplant loss (chronic dialysis >90 days, retransplant or sustained eGFR ≤ 15 ml/min/1.73m² for >3 months), (3) stroke or non-fatal MI, (4) sustained 40% decline of eGFR, (5) HF events (hospitalization or urgent treatment), and (6) eGFR slope (ml/min/1.73 m²/year).

Aim 2: To determine SGLT2i safety in KTRs. The primary safety outcome will include all SAEs and items of interest (mycotic infections and UTIs; all other infections requiring ER visit or hospitalization; amputation, bone fracture, diabetic ketoacidosis, episodes of AKI, hypotension, hypoglycemic episodes, and biopsy-proven acute transplant rejection).

Clinical challenges

Can I prevent PTDM in my high cardio-metabolic risk kidney transplant candidate? How should I manage a new kidney transplant patient who develops postop PTDM?

Can I use SGLT2i for my kidney transplant patient with PTDM?

Can I use GLP-1 agonists for my kidney transplant patient with PTDM?

Prospective post-transplant GLP-1 receptor agonist studies

Study	Study size and design	Duration	Intervention/ Comparator	Primary outcome / Main outcome	Primary outcome results / Outcome results
Pinelli et al. Diabetes Care 2013	N=5; prospective, observational (interventional) (case series)	3 weeks	Liragutide	Tacrolimus AUC0–12h	Tac-AUC reduced, Tac trough levels unaltered, reduction of postprandial glucose and body weight
Halden et al Diabetes Care 2016	N=24; RCT	4 weeks	GLP-1 infusion / 0.9% saline. Hyperglycemic clamp	Fasting levels of plasma glucose, glucagon, and insulin, Area under the curve concentrations	Patients with PTDM showed a reduced ability to suppress circulating glucagon levels during the hyperglycemic clamp. First and second- phase insulin secretion was lower compared to the control group

Management of Diabetes Mellitus With Glucagonlike Peptide-1 Agonist Liraglutide in Renal Transplant Recipients: A Retrospective Study

J.-H. Liou^a, Y.-M. Liu^a, and C.-H. Chen^{b,c,d,e,*}

The Use of GLP1R Agonists for the Treatment of Type 2 Diabetes in Kidney Transplant Recipients

Aleksandra Kukla, MD,¹ Jennifer Hill, DNP,¹ Massini Merzkani, MD,¹ Andrew Bentall, MD,¹ Elizabeth C. Lorenz, MD,¹ Walter D. Park, BS,² Matthew D'Costa, MD,² Yogish C. Kudva, MD,³ Mark D. Stegall, MD,² and Pankaj Shah, MD³

https://doi.org/10.1007/s13300-020-00786-1		ck for lates
Diabetes Ther (2020) 11:987-994	0	9

Sharif et al. NDT 2024

BRIEF REPORT

A Retrospective Study of Glucagon-Like Peptide 1 Receptor Agonists for the Management of Diabetes After Transplantation

Thiyagarajan Thangavelu · Elizabeth Lyden · Vijay Shivaswamy 💿

Safety and Efficacy of Tirzepatide in Patients with Solid-Organ Transplant

Abstract presentation at American Diabetes Association 2024

Table 1. Baseline demographics

Characteristics	Number of patients (n = 16)
Transplant type:	
Kidney Heart Liver Lung Simultaneous Pancreas and Kidney Heart and Kidney	5 1 5 3 1
Race: Caucasian Hispanic African American Other	9 2 3 2
Diabetes type: p Type 1 Type 2 Steroid induced hyperglycemia Post-transplant diabetes	1 10 2 3
Immunosuppression: Steroid Tacrolimus Mycophenolate mofetil	16 16 16
Age at time of drug initiation Mean ± SD	56.7 ± 13.2
Time from transplant to drug initiation in months Mean ± SD Median (Min, Max)	53.6 ± 55.2 23.7 (15.9,80.1)

Table 2. Table 2. Changes Observed from Baseline through Last Available Follow-Up

	Baseline	3 months	6 months	Change from baseline to 6 months
A1C, % Mean ± SD Median (Min, Max) Mean percent change P-value	7.4 ± 2.3 6.5 (6, 8.3)	6.8 ± 1.3 6.9 (5.7,7.5)	6.3 ± 0.8 6.5 (5.6,7)	-1.3 ± 1.9 -0.6 (-7.5,0) -14.8% 0.33
Weight, Kg Mean ± SD Median (Min, Max) Mean percent change P-value	99.7 ± 16.1 98.8 (89.5,107.9)	98.6 ± 17.7 99.3 (85.8,109.6)	92.8 ± 9.9 91.1 (83.4,101.6)	-5.4 ± 6.2 -4.5 (3.2,-21.3) -6.9% 0.3
Fasting Blood glucose, mg/dl Mean ± SD Median (Min, Max) P-value	132.7 ± 45.9 122.5 (101.5,142.7)	115.4 ± 28.5 110 (92.7,134.2)	107.5 ± 21.7 106 (94.2,122.5)	-21.4 ± 36.5 -13.0 (-56.5,-2.5) 0.16
Serum eGFR, mL/min/1.73 m ² Mean ± SD Median (Min, Max) P-Value	50.3 ± 20.4 49 (35.5, 59.2)	51.3 ± 20.9 45 (35,64)	50.3 ± 21.4 46 (41.58)	0.06 ± 5.6 1 (-8,12) 0.96
Tac level (FK506), ng/ml Mean ± SD Median (Min, Max) P-value	7.6 ± 2.5 7.5 (6.1,9.7)	6.9 ± 2.2 6.8 (5.2,9)	6.0 ± 1.8 6.4 (4.9, 6.8)	0.21 ± 2.21 0.1 (-3,4) 0.18

DOWLATSHAHI et al. Diabetes 2024;73(Supplement_1):13-PUB

<u>Clinical challenges – summary/conclusions</u>

- Risk can be mitigated but not eliminated.
- Targeting obesity would help.
- Modification of immunosuppression needs balancing against competing risks.
- Good short-term safety and efficacy data for SGLT2i use.
- Risk for UTIs probably not any different.
- Two large RCTs either in progress or hopefully soon to start.

- Go in quick with insulin but safety netting needed for outpatient management.
- Do not alter immunosuppression unless critical need.
- Good short-term safety and efficacy data for GLP-1 agonist use.
- Weight loss benefits are observed post-transplantation.
- No large RCTs in progress.

PTDM society guidelines/consensus statements

DIABETIC

Received: 14 August 2020 Accepted: 9 January 2021

DOI: 10.1111/dme.14523

REVIEW ARTICLE

Association of British Clinical Diabetologists and Renal Association guidelines on the detection and management of diabetes post solid organ transplantation

Tahseen A. Chowdhury¹ | Mona Wahba²| Ritwika Mallik¹| Javeria Peracha³Dipesh Patel⁴| Parijat De⁵| Damian Fogarty⁶| Andrew Frankel⁷Janaka Karalliedde⁸ | Patrick B. Mark⁹| Rosa M. Montero¹⁰| Ana Pokrajac¹¹Sagen Zac-Varghese¹²| Stephen C. Bain¹³ | Indranil Dasgupta^{14,15}Debasish Banerjee¹⁶ | Peter Winocour¹⁷ | Adnan Sharif¹⁸

Nephrol Dial Transplant, 2024, 39, 531–549

https://doi.org/10.1093/ndt/gfad258 Advance access publication date: 3 January 2024

International consensus on post-transplantation diabetes mellitus

Adnan Sharif ¹², Harini Chakkera³, Aiko P.J. de Vries ^{4,5}, Kathrin Eller ⁶, Martina Guthoff ⁷, Maria C. Haller ^{8,9}, Mads Hornum¹⁰, Espen Nordheim ^{11,12}, Alexandra Kautzky-Willer¹³, Michael Krebs ¹³, Aleksandra Kukla^{14,15}, Amelie Kurnikowski¹⁶, Elisabeth Schwaiger¹⁷, Nuria Montero ¹⁸, Julio Pascual ^{19,20}, Trond G. Jenssen^{11,21}, Esteban Porrini²² and Manfred Hecking ^{10,23,24}

> Chowdhury et al. Diabetic Med 2021 Sharif et al. NDT 2024

NHS University Hospitals Birmingham

Thank you for you attention

Adnan.Sharif@uhb.nhs.uk

@AdnanSharif1979; @adnan-sharif.bsky.social

Courses and

0 9 0 1

the survey of the line of the