

NHS Foundation Trust

British Clinical Diabetologists Endotext

Management of DKA and Emergencies in DKD

Prof Ketan Dhatariya MBBS MSc MD MS FRCP PhD

Consultant in Diabetes and Endocrinology Norfolk and Norwich University Hospitals

NHS Foundation Trust

Disclosures

- In the last 12 months I have received honoraria, travel or fees for speaking or advisory boards from
 - Abbott Diabetes
 - AstraZeneca
 - Boehringer-Ingelheim
 - Eli Lilly
 - Menarini
 - Novo Nordisk
 - Roche
 - Sanofi Diabetes

BDS-IF British Clinical British Clinical Guidetines Guidetines

NHS Foundation Trust

What Emergencies?

- Diabetic Ketoacidosis (DKA)
- Hyperosmolar Hyperglycaemic State (HHS)
- Hypoglycaemia
- The 'Diabetic Foot'

NHS Foundation Trust

Published in August 2024

Diabetologia (2024) 67:1455–1479 https://doi.org/10.1007/s00125-024-06183-8

CONSENSUS REPORT

Hyperglycaemic crises in adults with diabetes: a consensus report

Guillermo E. Umpierrez¹ · Georgia M. Davis¹ · Nuha A. ElSayed^{2,3} · Gian Paolo Fadini^{4,5} · Rodolfo J. Galindo⁶ · Irl B. Hirsch⁷ · David C. Klonoff⁸ · Rozalina G. McCoy^{9,10} · Shivani Misra^{11,12} · Robert A. Gabbay^{2,3} · Raveendhara R. Bannuru² · Ketan K. Dhatariya^{13,14}

P

Hyperglycemic Crises in Adults With Diabetes: A Consensus Report

Guillermo E. Umpierrez,¹ Georgia M. Davis,⁷ Nuha A. ElSayed,^{2,3} Gian Paolo Fadini,^{4,5} Rodolfo J. Galindo,⁶ II B. Hirsch,⁷ David C. Klonoff,⁸ Rozalina G. McCoy,^{9,10} Shivani Misra,^{11,12} Robert A. Gabbay,^{2,3} Raveendhara R. Bannuru,² and Ketan K. Dhatariya^{13,14}

1257

NHS Foundation Trust

Word Limit!

	Table 4 Features of DKA and HHS	143				
	Special population	Clinical characteristics and presention	ta- Diagnostic considerations	Specific management considerations	Future care considerations	0
	Frail or older adults [181]	High rate of preexisting comorb ties. High risk for hospital mortality, prolonged hospitalisation and D recurrences.	 isolated HHS and mixed DKA/ HHS occur more frequently than DKA. Evaluate for specific precipitating factors and concurrent diagnoses (cardiovascular events, infection, medications). 	 Fluid resuscitation and rate of fluid replacement need to account for comorbidities and acute precipitat- ing events. Address polypharmacy. 	Assessment of cognitive and func- tional status, including capacity for self-management. Continued management of comor- bidities and risk factors for DKA/ HHS recurrence.	
	SGLT2 inhibitor [91, 93, 103, 182]	May be spontaneous or precedent	May present with near-normal glu-	Acute management as for 'general' DPA to analyze pote on ac	SGLT2 inhibitor therapy is not rec-	
End-stage kidney disease [2, 18	 About 4% of pat and end-stage ki rienced DKA/HI May present wit High preexisting burden with incr mortality. 	 ients with diabetes dney disease expe- HS. h fluid overload. comorbidity eased risk of 	Patients with end-stage kidt disease usually present with greater hyperglycaemia, mo frequent hyponatraemia, hig osmolality, hyperkalaemia, lower ketone concentrations β -hydroxybutyrate compare patients without end-stage k disease.	ey • Careful fluid a potassium rep • Greater risk o cations. and s of d with cidney	administration and • Ho olacement are needed. ag of cardiac co-compli- • Cl ing	olistic multidisciplinary care and gressive multiple risk factor inter- ntion is necessary. oser glucose and ketone monitor- g is necessary.
	Pregnancy [160, 184]	 Up to 2% of pregnancies with pregestational diabetes develop DKA. Most cases occur with preexistin T1D. The incidence of DKA in gesta- tional diabetes is low (<0.1%). 	 Euglycaemic DKA (glucose <11.1 mmol/l [200 mg/dl]) may occur. Mixed acid-base disturbances may occur with hyperemesis, making the diagnosis challenging. 	 The significant feto-maternal risk requires immediate expert senior medical and obstetric intervention. Ideally patients should be cared for in delivery suites or high-depend- ency units. 	 Management guidelines in the emergency department or obstetric unit should include sections on the management of DKA in pregnancy as well as sick day rules. 	
	COVID-19 [79, 185]	 Higher frequency of DKA durin the COVID-19 pandemic. At-risk groups are adults with preexisting T2D. High risk for complications, nee for ICU care, longer hospital sta and mortality. 	 g Usual diagnostic criteria. Higher frequency of mixed DKA/ HHS especially in older adults. d ys. 	 Treatment with high-dose steroids requires higher-dose insulin to treat refractory ketonaemia. In newly diagnosed individuals presenting with diabetes in DKA, diabetes phenotyping may be helpful. 	Discharge on insulin treatment with careful follow-up.	Diabetologia (202

T1D, type 1 diabetes; T2D, type 2 diabetes

Umpierrez GE et al Diabeteologia 2024;67(8):1455-1479

Association of British Clinical Diabetologists Diabetologists

Norfolk and Norwich University Hospitals

NHS Foundation Trust

^{School}Changes in DKA in Renal Disease

	Normal renal function	CKD stages 1–3	CKD stages 4 and 5	ESRD				
Insulin degradation	Normal	Normal	Decreased	Decreased				
Ketone body formation	Mild to severe	Mild to severe	Moderate to severe	Moderate to severe				
Ketonuria	Moderate to severe	Moderate to severe	Mild to moderate	Non-existent to mild depending on ability to form urine				
Acidosis	Mild to severe	Mild to severe	Moderate to severe	Depends on timing of latest dialysis session				
Hypertonicity	Mild to severe	Mild to severe	Moderate to severe	Depends on timing of latest dialysis session				
Potassium (K ⁺) levels	Hyperkalaemia with total body K ⁺ deficit	Hyperkalaemia with total body K ⁺ deficit	Hyperkalaemia with normal total body K ⁺	Depends on timing of latest dialysis session				
Treat as per normal DKA guidelines								

Stathi D et al Diab Med 2025;42(2):e15405

Recommendations

- Don't assume that symptoms in those with advanced CKD are due to the CKD / uraemia
- Assess fluid status (e.g. usual post dialysis weight vs presentation weight)
- Measure ketones and lactate in those with a high anion gap acidosis
- Dialysis improves glucose and acidosis, but not ketosis

Beware Euglycaemic DKA

- DKA can present with normal glucose concentrations
- SGLT2i use induced ketosis
- People should NOT be on a low carbohydrate diet
- Those on glucose free solution CRRT are at particular risk

NHS Foundation Trust

Management of DKA

Aim for reduction in ketones of 0.5mmol/l/hr, and glucose 3-5mmol/l/hr, and a rise in bicarbonate of 3mmol/l/hr.

Calculated osmolality should not fall by more than 8mOsmol/Kg/hr

Stathi D et al Diab Med 2025;42(2):e15405

Electrolytes

- Do not give potassium unless it is <3.5mmol/l
- Hyperkalaemia should improve with insulin therapy
- If potassium is >5.0mmol/l use a cardiac monitor
- If potassium is >6.5mmol/l consider RRT
- Consider bicarbonate replacement and / or RRT if pH<7.2

NHS Foundation Trust

Resolution of DKA

 Resolution of DKA is defined as ketones <0.6mmol/l and venous pH >7.3

NHS Foundation Trust

HHS – Diagnosis

- Hypovolaemia
- Raised plasma osmolality (>320mOsm/kg)
- Hyperglycaemia (>30.0mmol/l) without significant ketonaemia (<3.0mmol/l) or acidosis (pH >7.3) and bicarbonate (>15.0mmol/l)
- In mixed HHS/DKA, pH is <7.3, bicarbonate is <15 mmol/l and ketone >3 mmol/l

NHS Foundation Trust

^{School}Changes in HHS in Renal Disease

	Normal renal function	CKD stages 1–3	CKD stages 4 and 5	ESRD	
Hypovolaemia	Severe	Severe	Moderate to severe	If residual urine production, moderate to severe	
Urine output	Significantly increased	Significantly increased	Variable	Variable	
Osmolality	Moderately to significantly increased	Moderately to significantly increased	Significantly increased	Significantly increased	
Effective osmolality	Moderately to significantly increased				
Hyperglycaemia	Severe	Severe	Severe	Severe	

Treat as per normal HHS guidelines

Stathi D et al Diab Med 2025;42(2):e15405

IHS Foundation Trust

Electrolytes

- Do not give potassium unless it is <3.5mmol/l
- If potassium is >5.5mmol/l use a cardiac monitor
- If potassium is >6.5mmol/l consider RRT
- Consider RRT if osmolality >350mOsmol/Kg

IHS Foundation Trust

Treatment Aims – Fluid

- Effective osmolality should not fall by more than 8mOsmol/Kg/hr (if it is faster, reduce fluid infusion rate)
- Aim for fluids given at 20-25ml/kg/hr
- Even if sodium rises, if osmolality is falling, continue 0.9% sodium chloride. Only change to 0.45% if sodium is rising and osmolality is rising, or not falling at the expected rate

Association of British Clinical Diabetologists **Endotext** Norfolk and Norwich University Hospitals

Treatment Aims – Glucose

- Check glucose and electrolytes hourly for the first 6 hours, then 2 hourly
- If glucose is dropping <5.0 mmol/L per hour, check fluid balance
- If positive balance is inadequate increase infusion rate
- If fluid replacement is adequate and glucose not falling, start FRIII at 0.05 units/kg/h
- In people with ESRD, start FRIII at 0.02 units/kg/h

IHS Foundation Trust

Resolution of HHS

- Measured or calculated serum osmolality falls to less than 320mOsm/kg
- Renal function has returned to baseline
- Hyperglycaemia has been corrected (<13.9 mmol/l)
- Cognitive status has improved

Hypoglycaemia Prevention

- Everyone with diabetes with significant renal disease should be on a CGM (ideally with an alarm)
- Reduce insulin doses by 25% on haemodialysis days
- If the pre-dialysis glucose is <7mmol/L, give 20–30g low GI
 CHO
- All dialysis units (and patients) should have a hypo kit

In the Event of Hypoglycaemia

- An appropriate rapid-acting carbohydrate treatment should be provided taking into account fluid, potassium and phosphate restrictions
- Patients and staff should be educated in regard to the appropriate treatment of mild to moderate hypoglycaemia and hypoglycaemia unawareness

Feet!

- The feet of a person with ESRD should be inspected at least every month, assessing
 - Vascular status (signs of PAD?)
 - Skin (colour, temperature, oedema, infection, pre-ulceration)
 - Deformity
 - Footwear
 - Foot care

https://iwgdfguidelines.org/wp-content/uploads/2023/07/IWGDF-Guidelines-2023.pdf

Feet

- Poor peripheral circulation, immobility, changes in leg swelling, poor eyesight, etc all contribute to an increased risk of ulceration, infection, and ultimately amputation
- If you do not have one, talk to your local specialist diabetes foot team to get a liaison podiatrist – or at the very least establish a relationship to allow for rapid assessment for foot wounds

Norwich Medical University of East Inden School University of East Inden School School NHS Foundation Trust

IBDS-IF

XX

Biabetologists Foot-Care-Audit-fourth-annual-report-FINAL.pdf

NHS Foundation Trust

Addressing Uncertainty

Digital Evaluation of Ketosis and Other Diabetes Emergencies (DEKODE)

Regular and frequent feedback of specific clinical criteria delivers a sustained improvement in the management of diabetic ketoacidosis M

Authors: Punith Kempegowda,^A Ben Coombs,^B Peter Nightingale,^C Joht Singh Chandan,^D Jaffar ^AI-Sheikhli,^E Bhavana Shyamanur,^D Kasun Theivendran,^D Anitha Vijayan Melapatte,^F Umesh Salanke,^G Mohammed Akber,^G Sandip Ghosh^G and Parth Narendran^H

Open access

Original research

QUALITY IMPROVEMENT WINNING PAPER

BMJ Open Diabetes Research & Care Clinical and biochemical profile of 786 sequential episodes of diabetic ketoacidosis in adults with type 1 and type 2 diabetes mellitus

Emma Ooi [©], ¹ Katrina Nash, ² Lakshmi Rengarajan, ³ Eka Melson, ^{3,4} Lucretia Thomas, ² Agnes Johnson, ² Dengyi Zhou, ² Lucy Wallett, ³ Sandip Ghosh, ³ Parth Narendran, ^{3,5} Punith Kempegowda^{3,4}

Sustaining improvement in diabetes-related ketoacidosis management through a Quality Improvement Project

LAKSHMI RENGARAJAN,¹ KATRINA NASH,² EMMA OOI,³ CATHERINE COOPER,⁴ AMY BIRCHENOUGH,⁵ MEGAN OWEN,⁴ SANJAY SARAF,¹ MUHAMMA ALI KARAMAT,¹ PARIJAT DE,⁵ SENTHIL KRISHNASAMY,⁴ PARTH NARENDRAN,^{1,6} PUNITH KEMPEGOWDA,^{1,7} ON BEHALF OF THE DEKODE GROUP

Kempegowda P et al Clin Med 2017:17(5):389-394 Ooi E et al BMJ Open DRC 2021;9:e002451 Regarajan LN et al Brit J Diab 2022;22(2):132-138

DEKODE Database

- Has data on tens of thousands of DKA admissions
- Collected by resident doctors or medical students
- Regular feedback to contributing institutions
- Now international USA, Italy, Uzbekistan, India
- Several papers currently in preparation
- If you want to join in just ask!

If Anyone is Interested

Received: 1 May 2024 Accepted: 25 June 2024

DOI: 10.1111/dme.15405

DIABETIC Medicine

NHS Foundation Trust

INVITED REVIEW

Management of diabetes-related hyperglycaemic emergencies in advanced chronic kidney disease: Review of the literature and recommendations

Dimitra Stathi¹ | Ketan K. Dhatariya^{2,3} | Omar G. Mustafa^{1,4}

¹Department of Diabetes, King's College Hospital NHS Foundation Trust, London, UK

²Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK

Abstract

Aims: Despite the substantial progress in the management of diabetes mellitus (DM), chronic kidney disease (CKD) remains one of the most common complications. Although uncommon, diabetic emergencies [diabetic ketoacidosis (DKA),

Stathi D et al Diab Med 2025;42(2):e15405

NHS Foundation Trust

British Clinical British Clinical Endotext

Management of DKA and Emergencies in DKD

www.norfolkdiabetes.com

ketan.dhatariya@nnuh.nhs.uk

IWGDF

@ketandhatariya@JBDSIP@ABCDiab

