
Bristol meeting

A Year in Endocrinology 2023 - 2024 - what did we learn?

Karim Meeran Imperial College 5th September 2024

Endocrinology 2023-2024 What have we learned?

- Guidelines: NICE on AI published last week, August 2024.
- Prednisolone versus hydrocortisone for Al June 2023
- Endocrine Society and ESE guideline on steroid induced AI
- Cortisol and synacthen tests (Newcastle August 2024)
- Crinecerfont for Congenital Adrenal Hyperplasia NEJM June 2024
- AtumeInant for ACTH dependant Cushings
- Levolio study EJE Dec 2023:
- Non-Blind studies all find that T3 with T4 is magic
- Blind studies all fail to find this: placebo effect is very potent

Search NICE...

Sign in

Guidance

Standards and indicators

Life sciences **British National** Formulary (BNF) British National Formulary for Children (BNFC)

Clinical Knowledge Summaries (CKS)

Home > NICE Guidance > Conditions and diseases > Diabetes and other endocrinal, nutritional and metabolic conditions > Adrenal dysfunction

Adrenal insufficiency: identification and management

NICE guideline [NG243] Published: 28 August 2024

Page 1 of 2

BMJ 2014;349:g4843 doi: 10.1136/bmj.g4843 (Published 30 July 2014)

No evidence of difference between prednisolone and hydrocortisone

Glucocorticoid replacement

Pending further studies of new agents, the old treatments are still the best

Anjali Amin clinical research fellow, Amir H Sam senior lecturer in endocrinology, Karim Meeran professor of endocrinology

Imperial Centre for Endocrinology, Imperial College London, UK

Steroids are among the most commonly prescribed drugs. Synthetic glucocorticoids such as prednisolone and conventional doses of hydrocortisone. This was unsurprising, however, as the doses of hydrocortisone were not comparable:

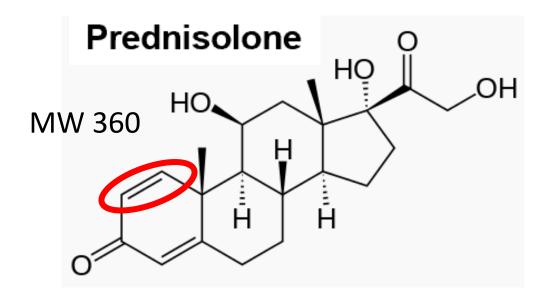
A Sharma et al.

RESEARCH

26th July 2023

Optimising prednisolone or prednisone replacement in adrenal insufficiency

Angelica Sharma^{1,2,*}, Katharine Lazarus^{1,2,*}, Deborah Papadopoulou^{1,2}, Hemanth Prabhudev², Tricia Tan^{1,2,3}, Karim Meeran^{1,2} and Sirazum Choudhury^{1,2,3}


¹Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK

Correspondence should be addressed to S Choudhury: s.choudhury@imperial.ac.uk

*(A Sharma and K Lazarus contributed equally to this work)

²Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK

³Department of Clinical Biochemistry, North West London Pathology, London, UK

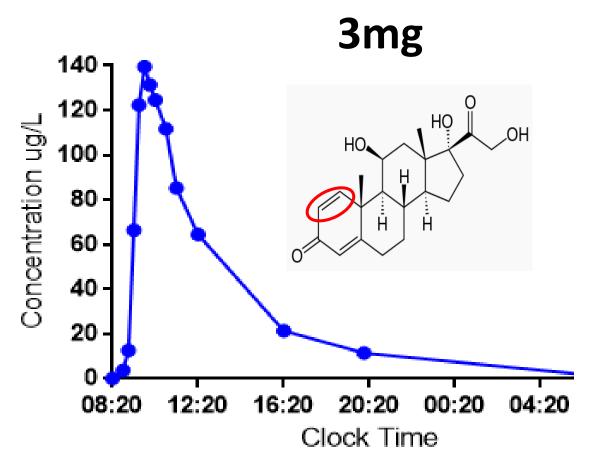
Prednisolone has a longer half life and is more potent than cortisol 2.3x binding affinity than cortisol

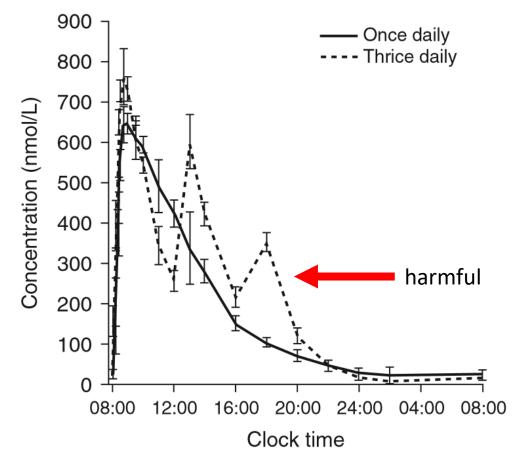
Replacement dose 3-4mg ONCE daily

Prednisolone Replacement Therapy Mimics the Circadian Rhythm More Closely Than Other Glucocorticoids

Journal of Applied Laboratory Medicine | 152–161 September 2016

Emma L. Williams, 1 Sirazum Choudhury, 1 Tricia Tan, 2 and Karim Meeran 2,3*


Background: This study examined the pharmacokinetic profile of prednisolone.


Methods: Using a newly developed ultra-performance liquid chromatography MS/MS method, prednisolone profiles in healthy volunteers and patients with adrenal insufficiency already treated with prednisolone were prospectively analyzed in a tertiary center.

Results: Twelve prednisolone day curves were analyzed. Six patients with secondary adrenal insufficiency provided 7 curves and 3 healthy volunteers provided 5 curves, 1 of which was with the prednisolone administered in divided doses. The mean prednisolone dose required for adequate replacement in hypoadrenal patients was 3.86 mg. The overall mean maximal serum concentration (C_{max}) was 114.0 µg/L and was achieved at an average time to maximal concentration (T_{max}) of 1.43 h. Total glucocorticoid exposure was represented by the mean area under the curve to 24 h (AUC_{0-24h}), which was 518.2 μ g $|\cdot|$ h/L. Splitting the dose substantially increased the total glucocorticoid exposure. **Conclusions:** The pharmacokinetic profile of prednisolone is similar to the published profile of dualrelease hydrocortisone. Once-daily prednisolone can thus be used as a replacement for hydrocortisone. Further studies need to be carried out to accurately calculate an equivalent replacement dose. Prednisolone levels are a useful adjunct to dose adjustment when low doses are being used for replacement.

Copyright 2016 by American Association for Clinical Chemistry

Prednisolone has the right half life for OD...

Rapidly absorbed with half life suitable for once daily administration

Glucocorticoid Withdrawal Syndrome following treatment of endogenous Cushing Syndrome

Xin He¹ · James W. Findling^{2,3} · Richard J. Auchus^{1,4,5}

Accepted: 15 March 2022 / Published online: 26 April 2022

© The Author(s) 2022

Abstract

Purpose: Literature regarding endogenous Cushing syndrome (CS) largely focuses on the challenges of diagnosis, subtyping, and treatment. The enigmatic phenomenon of glucocorticoid withdrawal syndrome (GWS), due to rapid reduction in cortisol exposure following treatment of CS, is less commonly discussed but also difficult to manage. We highlight the clinical approach to navigating patients from GWS and adrenal insufficiency to full hypothalamic-pituitary-adrenal (HPA) axis recovery.

Methods: We review the literature on the pathogenesis of GWS and its clinical presentation. We provide strategies for glucocorticoid dosing and tapering, HPA axis testing, as well as pharmacotherapy and ancillary treatments for GWS symptom

Glucocorticoid withdrawal syndrome (GWS)

 The enigmatic phenomenon of glucocorticoid withdrawal syndrome (GWS), due to rapid reduction in cortisol exposure following treatment of CS, is difficult to manage.

(eg from 7mg to 6mg prednisolone, you get aches and pains)

 Awareness of GWS by treating physicians and patient education are essential. GWS is not the same as AI but it makes it difficult to wean Imperial Centre for Endocrinology

Home

Training days (meeran.info)

Hammersmith calcium:creatinine clearance calculator

Endocrine-bible

✓ For Patients

Toolkit for doctors

Dynamic function testing

For Doctors

For Trainees

For Students

Research

Prednisolone

Prednisolone withdrawal

Prednisolone in vasculitis and cortisol suppression

Simple clinical audit and research for patient benefit

Imperial Centre for Endocrinology

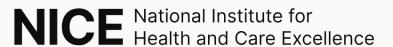
Prednisolone withdrawal

Practically-speaking how do I reduce my prednisolone when my vasculitis is in remission? <u>version of table pdf.</u>

Printable

If your rheumatologist wants to stop your prednisolone, either because you are in remission, or because you have had a newer treatment for your vasculitis, you have a choice. You can either stay on a small replacement dose forever (just over 3mg) or you can deliberately cut the dose so that the adrenal glands slowly awaken but risk feeling a bit tired and under the weather for a while. Almost all vasculitis patient's adrenal glands will recover if the dose is cut by 0.5mg every month. This is hard work for patients because for most of that time, you have to run on less glucocorticoid that you need in order to wake up the adrenal. This is the reason that some of you might choose to stay on 3mg daily even if your vasculitis is in remission.

Cutting from 3mg to nothing can take 6 months, and some people can do this more quickly than others. It depends of course on how long you have had prednisolone, but many authors suggest cutting by half a milligram per month.


Patients with no adrenal glands need approximately 3mg (varies from 2-5mg) prednisolone as there is no hope of the adrenal gland waking up. Details can be found here on http://www.imperialendo.com/prednisolone and http://dx.doi.org/10.1530/EC-17-0257.

I really want to get my prednisolone dose below 3mg, how do I do this?

The other way to reduce prednisolone below 3mg is to take 3mg on some days and 2mg on others. If you take 2mg for one day and 3mg for 6 days, and then slowly increase the number of days that you take 2mg for. It will in fact take 7 weeks to go from 3mg to 2mg. This should slowly help your adrenal gland to recover.

protocol

Week	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
0	5	5	5	5	5	5	5
1	5	4	5	4	5	4	5
2	4	4	4	4	4	4	4
3	4	3	4	3	4	3	4
4	3	3	3	3	3	3	3
5	3	3	3	2	3	3	3
6	3	2	3	3	2	3	3
7	3	2	3	2	3	2	3
8	2	3	2	3	2	3	2
9	2	3	2	2	3	2	2
10	2	2	2	3	2	2	2
11	2	2	2	2	2	2	2
12	2	2	2	1	2	2	2
13	2	1	2	2	1	2	2
14	2	1	2	1	2	1	2
15	1	2	1	2	1	2	1
16	1	2	1	1	2	1	1
17	1	1	1	2	1	1	1
18	1	1	1	1	1	1	1
19	1	1	1	0	1	1	1
20	1	0	1	1	0	1	1
21	1	0	1	0	1	0	1
22	0	1	0	1	0	1	0
23	0	1	0	0	1	0	0
24	0	0	0	1	0	0	0

Search NICE...

Sign in

Guidance

Standards and indicators

Life sciences

British National Formulary (BNF)

British National Formulary for Children (BNFC)


Clinical Knowledge Summaries (CKS)

Home > NICE Guidance > Conditions and diseases > Diabetes and other endocrinal, nutritional and metabolic conditions > Adrenal dysfunction

Adrenal insufficiency: identification and management

NICE guideline [NG243] Published: 28 August 2024

Physiological equivalent doses

18

22

- 19 The physiological equivalent dose is the dose of glucocorticoid that is equivalent to
- 20 the amount that a healthy adrenal gland would normally produce:
- For people aged 16 years and over this is a total daily dose of hydrocortisone
 - 15 mg, prednisolone 3 mg, or dexamethasone 0.5 mg.

1.9.4 Do not routinely change from prednisolone to hydrocortisone to manage dose tapering below a physiological equivalent dose.

1.9.5 Tell people who are tapering glucocorticoid doses below a physiological equivalent dose:

 to expect temporary symptoms, including fatigue, reduction in appetite and low mood

Glucocorticoid dose-tapering regimens

- 1.9.1 For people who have been taking glucocorticoids to treat an underlying condition
 - reduce glucocorticoids to a daily physiological equivalent dose,

Decisions to taper dosages of glucocorticoid should be made by the clinical team who initiated the treatment.

1.9.2 For people who have been taking glucocorticoids for more than 12 weeks and no longer need them, after reducing to a daily physiological equivalent dose, consider stopping treatment using a slower dose-tapering regimen than in recommendation 1.9.1. For people taking prednisolone, once the daily dose is 3 mg, consider following the Imperial Centre for Endocrinology prednisolone withdrawal regimen.

Imperial Centre for Endocrinology

Home

Training days (meeran.info)

Hammersmith calcium:creatinine clearance calculator

Endocrine-bible

✓ For Patients

Toolkit for doctors

Dynamic function testing

For Doctors

For Trainees

For Students

Research

Prednisolone

Prednisolone withdrawal

Prednisolone in vasculitis and cortisol suppression

Simple clinical audit and research for patient benefit

Imperial Centre for Endocrinology

Prednisolone withdrawal

Practically-speaking how do I reduce my prednisolone when my vasculitis is in remission? <u>version of table pdf.</u>

Printable

If your rheumatologist wants to stop your prednisolone, either because you are in remission, or because you have had a newer treatment for your vasculitis, you have a choice. You can either stay on a small replacement dose forever (just over 3mg) or you can deliberately cut the dose so that the adrenal glands slowly awaken but risk feeling a bit tired and under the weather for a while. Almost all vasculitis patient's adrenal glands will recover if the dose is cut by 0.5mg every month. This is hard work for patients because for most of that time, you have to run on less glucocorticoid that you need in order to wake up the adrenal. This is the reason that some of you might choose to stay on 3mg daily even if your vasculitis is in remission.

Cutting from 3mg to nothing can take 6 months, and some people can do this more quickly than others. It depends of course on how long you have had prednisolone, but many authors suggest cutting by half a milligram per month.

Patients with no adrenal glands need approximately 3mg (varies from 2-5mg) prednisolone as there is no hope of the adrenal gland waking up. Details can be found here on http://www.imperialendo.com/prednisolone and http://dx.doi.org/10.1530/EC-17-0257.

I really want to get my prednisolone dose below 3mg, how do I do this?

The other way to reduce prednisolone below 3mg is to take 3mg on some days and 2mg on others. If you take 2mg for one day and 3mg for 6 days, and then slowly increase the number of days that you take 2mg for. It will in fact take 7 weeks to go from 3mg to 2mg. This should slowly help your adrenal gland to recover.

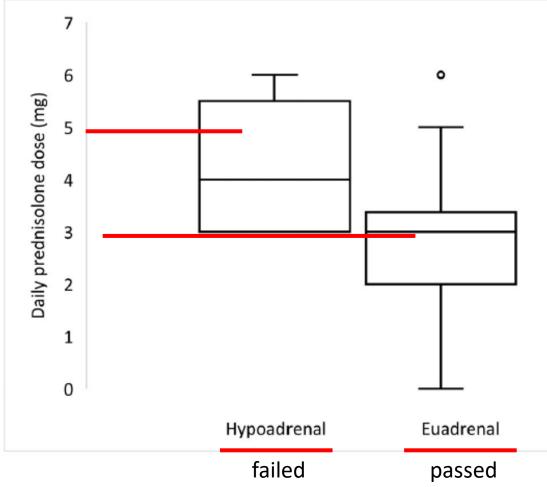
What about patients on glucocorticoids for rheumatological problems (eg: GCA)

- Guidelines: steroid withdrawal
- Don't do any tests
- Don't involve endocrinologists

Diagnostic accuracy of morning serum cortisol concentration in confirming recovery of the hypothalamic-pituitary-adrenal axis in patients on chronic glucocorticoid therapy

Ella Sharma¹ | Joe Berry² | Bridget Griffiths² | Alice Lorenzi² | Ben Thompson² | Chris Boot³ | Yaasir Mamoojee¹

Correspondence


Yaasir Mamoojee, Department of Endocrinology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.

Email: y.mamoojee@nhs.net

¹Department of Endocrinology, Royal Victoria Infirmary, Newcastle upon Tyne, UK

²Department of Rheumatology, Freemen Hospital, Newcastle upon Tyne, UK

³Department of Blood Sciences, Royal Victoria Infirmary, Newcastle upon Tyne, UK

FIGURE 1 Box and whisker plot illustrating the distribution of daily prednisolone doses at time of SST in hypoadrenal and euadrenal patients on long-term CGT. CGT, chronic glucocorticoid therapy; SST, synacthen stimulation test.

daily prednisolone dose of ≤3 mg is reached. This is consistent with a recent study demonstrating that a once-daily prednisolone dose of 2-4 mg is more physiological based on achieving serum prednisolone concentrations within therapeutic target ranges in patients with Al.6 It is assumed by many that prednisolone 5 mg once daily is not a suppressive dose and, indeed in many countries, the lowest strength tablet available is 5 mg. Therefore, in the absence of intercurrent acute illnesses, patients experiencing presumed hypoadrenal symptoms on a supra-therapeutic daily prednisolone dose of >4 mg may be considered to have steroid withdrawal symptoms. As such avoiding biochemical assessment to evaluate the integrity of the HPA axis in such patients but slowing down the rate of glucocorticoid tapering instead would be a clinically sound strategy.

In summary, we have validated an early serum cortisol concentration of >237 nmol/L (>8.6 μ g/dL) as a safe and useful screening test with 100% specificity for predicting recovery of HPA axis in patients on long-term CGT on tapering regimes (although it should be noted that morning serum cortisol screening cutoff thresholds may vary depending on the assay utilised for cortisol

Clin Endocrinol (Oxf). 2024 Aug;101(2):140-141.

SST, and morning cortisol ≤ 83 nmol/L ($\leq 3 \,\mu g/dL$) was 100% sensitive for Al.⁵ It is worth noting that a minority of patients were prescribed CGT for non-endocrine conditions in the latter cohort.

Our data validates a morning serum cortisol concentration of >237 nmol/L (>8.6 µg/dL), on the Cortisol-II assay by Roche Diagnostics, with 100% specificity at predicting recovery of HPA axis in patients on tapering doses of CGT. This offers a more rapid, convenient and cost-effective screening method for patients requiring biochemical assessment of the HPA axis with the potential for significant resource savings without any adverse impact on patient safety. In most centres, the treatment of GCA involves prednisolone reduction very successfully, without the involvement of endocrinologists, for example, by reducing the dose over a few weeks from 60 to 10 mg, and then reducing the dose by 1 mg per month. The involvement of endocrinologists potentially limits the ability of the rheumatologists to wean the patient off prednisolone independently and should therefore not be the norm. Our observation further empowers the rheumatologists to wean patients off prednisolone safely, thus reversing the trend of endocrinology involvement.

Our data further suggest that assessment of the HPA axis, if desired during tapering doses of CGT, should be considered once a

REFERENCES

- Burmester GR, Buttgereit F, Bernasconi C, et al. Continuing versus tapering glucocorticoids after achievement of low disease activity or remission in rheumatoid arthritis (SEMIRA): a double-blind, multicentre, randomised controlled trial. *Lancet*. 2020;396(10246):267-276.
- Barbar B, Mathieson C, Boot C, et al. Diagnostic accuracy of morning serum cortisol concentration in predicting secondary adrenal insufficiency. Clin Endocrinol. 2023;99(6):515-516.
- Javorsky BR, Raff H, Carroll TB, et al. New cutoffs for the biochemical diagnosis of adrenal insufficiency after ACTH stimulation using specific cortisol assays. J Endocr Soc. 2021;5:1-11.
- Sagar R, Mackie S, W. Morgan A, Stewart P, Abbas A. Evaluating tertiary adrenal insufficiency in rheumatology patients on long-term systemic glucocorticoid treatment. *Clin Endocrinol*. 2021;94(3): 361-370.
- Sbardella E, Isidori AM, Woods CP, et al. Baseline morning cortisol level as a predictor of pituitary-adrenal reserve: a comparison across three assays. Clin Endocrinol. 2017;86(2):177-184.
- Sharma A, Lazarus K, Papadopoulou D, et al. Optimising prednisolone or prednisone replacement in adrenal insufficiency. *Endocr Connect*. 2023;12(8):e230097.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

Clin Endocrinol (Oxf). 2024 Aug;101(2):140-141.

GENERAL MEDICINE SPECIALTIES TOPICS VOICES CME GUIDELINE WATCH

GUIDELINE WATCH | GENERAL MEDICINE, AMBULATORY MEDICINE, HOSPITAL MEDICINE

INFORMING PRACTICE

July 18, 2024

Glucocorticoid-Induced Adrenal Insufficiency: A New Guideline

Allan S. Brett, MD, reviewing Beuschlein F et al. Eur J Endocrinol 2024 May

This document provides a comprehensive overview, with specific recommendations for tapering steroid therapy.

Sponsoring Organizations: European Society of Endocrinology and Endocrine Society

Background

Clinicians vary considerably in their approach to patients with glucocorticoid-induced adrenal insufficiency.

European Journal of Endocrinology, 2024, **190**, G25–G51 https://doi.org/10.1093/ejendo/lvae029 Advance access publication 8 May 2024

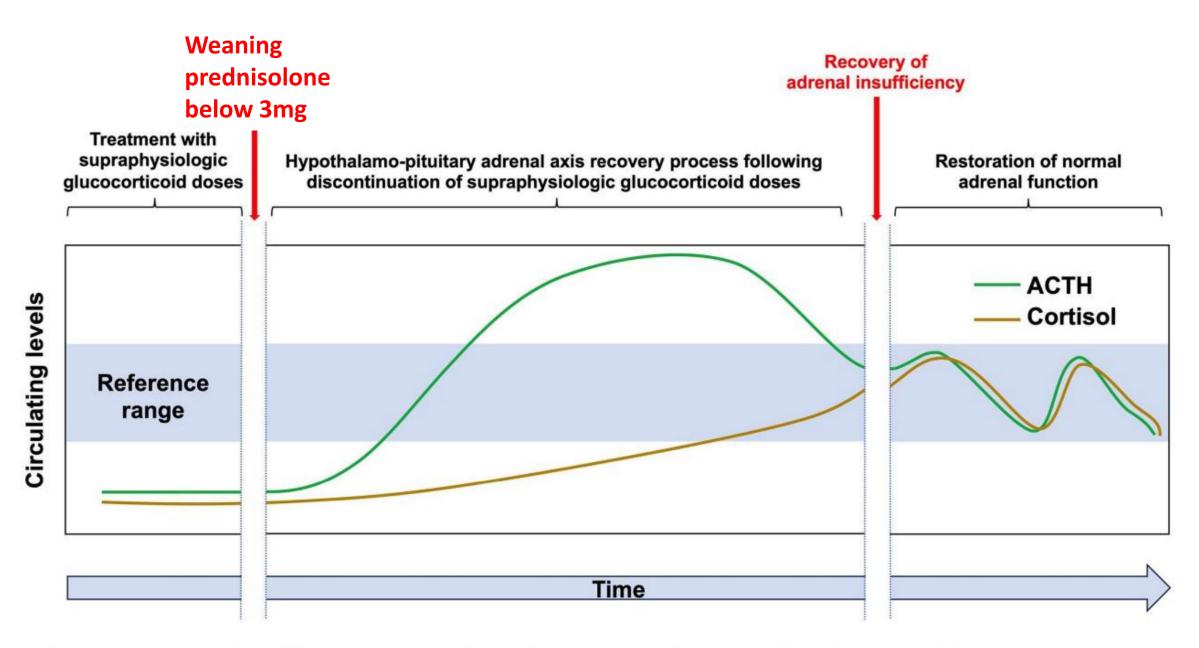
Clinical Practice Guideline

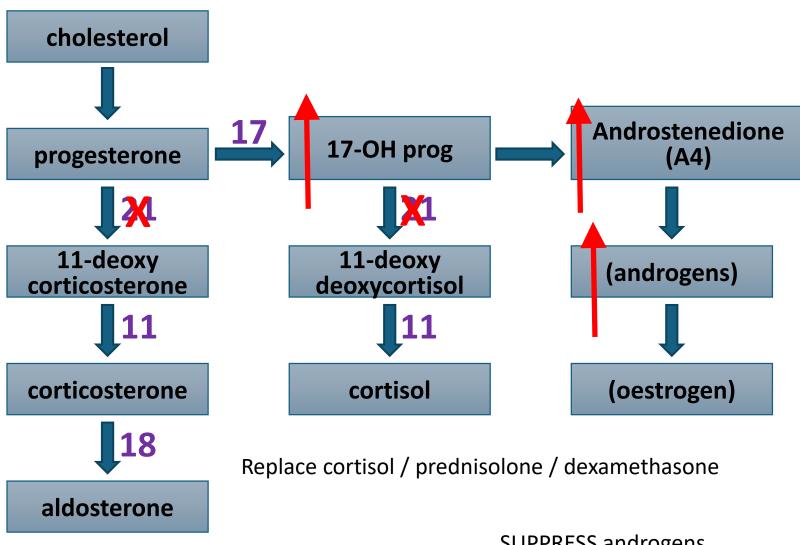
European Society of Endocrinology and Endocrine Society Joint Clinical Guideline: Diagnosis and therapy of glucocorticoid-induced adrenal insufficiency

Felix Beuschlein, 1,2,3,*† Tobias Else, 4,† Irina Bancos, 5,6 Stefanie Hahner, Oksana Hamidi, Leonie van Hulsteijn, 9,10 Eystein S. Husebye, 11,12 Niki Karavitaki, 13,14,15 Anand Vaidya, 17 Christine Yedinak, and Olaf M. Dekkers 10,19,20 Christine Yedinak, 18 and Olaf M. Dekkers 10,19,20 Christine Yedinak, 18

▼ 1.1 General recommendations for glucocorticoid therapy of non-endocrine conditions and recommendations regarding patient education

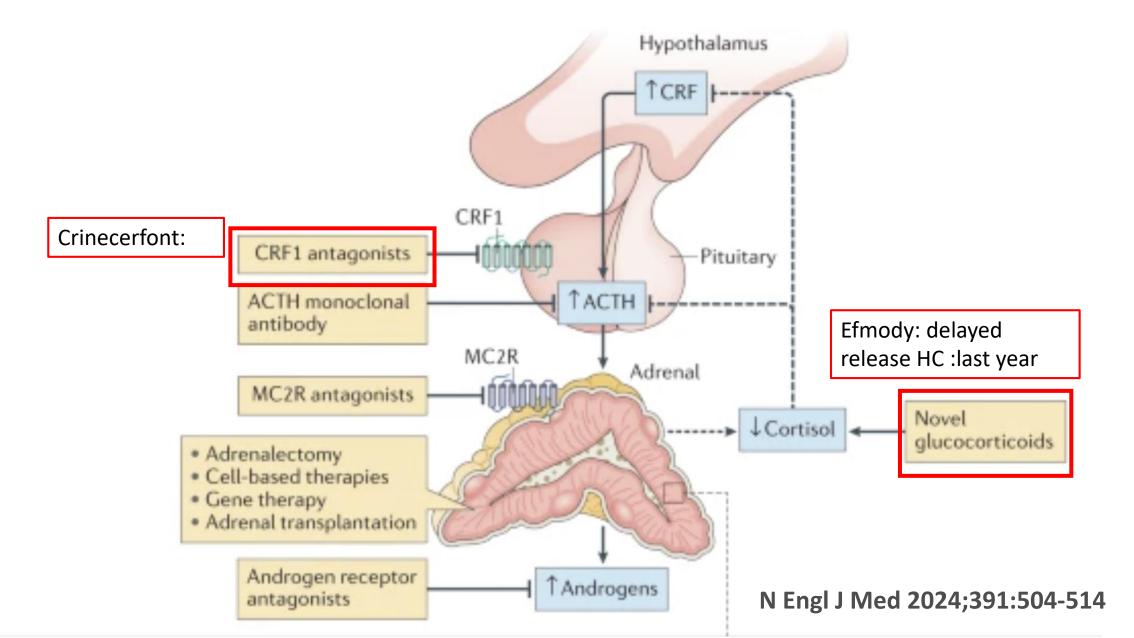
- R 1.1 We recommend that, in general, patients on, or tapering off glucocorticoids for non-endocrine conditions do not need to be evaluated by an endocrinology specialist.
- Routine dynamic testing (e.g., adrenocorticotropic hormone stimulation) is discouraged; the authors
 recommend it only in selected instances of ongoing uncertainty about adrenal status.




Figure 1: Schematic representation of HPA axis recovery following discontinuation of supraphysiologic glucocorticoid therapy (adapted from: Prete and Bancos 2021⁵³).

Summary: what have we learned?

- Prednisolone 3mg daily is a replacement dose for most individuals who have no adrenal glands
- Steroid withdrawal syndrome results in people taking more steroid than they need
- Weaning below 3mg is easier if done slowly
- Patients who have steroid induced adrenal insufficiency also suffer from steroid withdrawal syndrome, but this is not an Addisonian crisis, and coming off steroids is best done without endocrinologist involvement


Congenital adrenal hyperplasia

21 hydroxylase deficiency

SUPPRESS androgens

Novel therapeutic approaches in classic CAH.

ORIGINAL ARTICLE

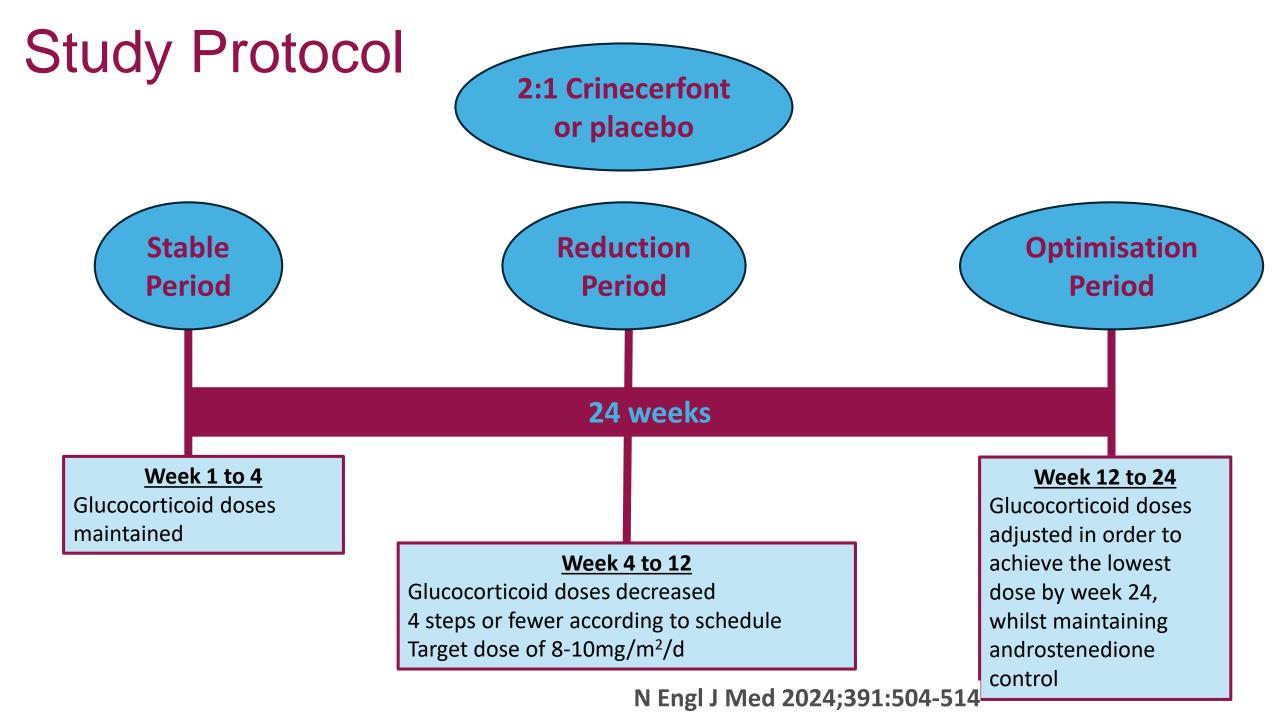
Phase 3 Trial of Crinecerfont in Adult Congenital Adrenal Hyperplasia

R.J. Auchus, O. Hamidi, R. Pivonello, I. Bancos, G. Russo, S.F. Witchel, A.M. Isidori, P. Rodien, U. Srirangalingam, F.W. Kiefer, H. Falhammar, D.P. Merke, N. Reisch, K. Sarafoglou, G.B. Cutler, Jr., J. Sturgeon, E. Roberts, V.H. Lin, J.L. Chan, and R.H. Farber, for the CAHtalyst Adult Trial Investigators*

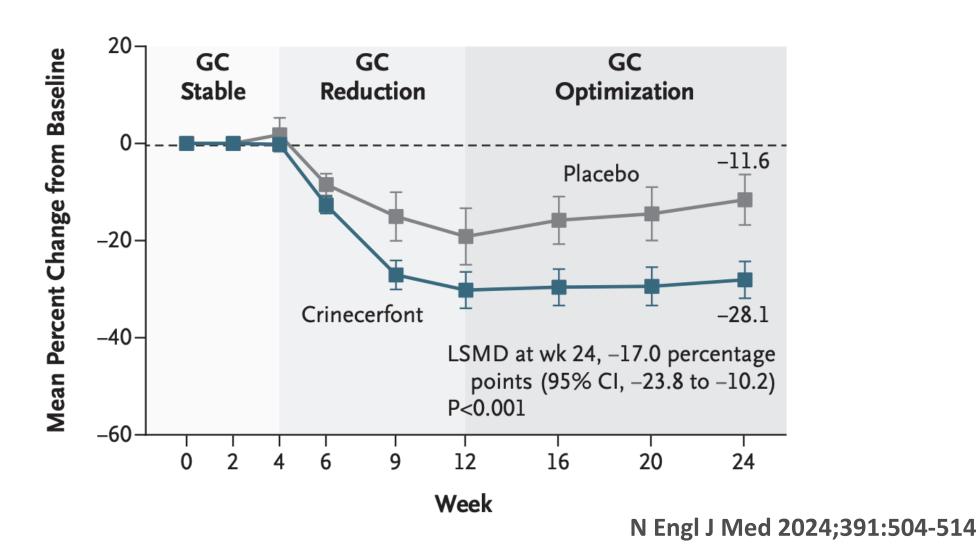
ABSTRACT

BACKGROUND

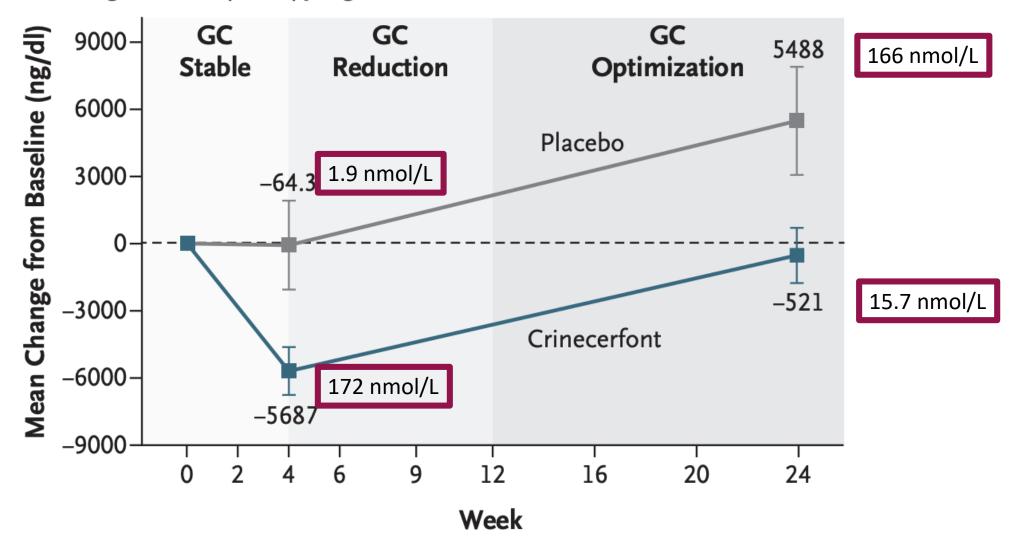
Adrenal insufficiency in patients with classic 21-hydroxylase deficiency congenital adrenal hyperplasia (CAH) is treated with glucocorticoid replacement therapy. Control of adrenal-derived androgen excess usually requires supraphysiologic glucocorticoid dosing, which predisposes patients to glucocorticoid-related complications. Crinecerfont, an oral corticotropin-releasing factor type 1 receptor antagonist, lowered androstenedione levels in phase 2 trials involving patients with CAH.


METHODS

In this phase 3 trial, we randomly assigned adults with CAH in a 2:1 ratio to receive crinecerfont or placebo for 24 weeks. Glucocorticoid treatment was maintained at a stable level for 4 weeks to evaluate androstenedione values, followed by glucocorticoid dose reduction and optimization over 20 weeks to achieve the lowest glucocorticoid dose that maintained androstenedione control (≤120% of the baseline value or within the reference range). The primary efficacy end point was the percent change in the daily glucocorticoid dose from baseline to week 24 with N Engl J Med 2024;391:504-514 maintenance of androstenedione control.

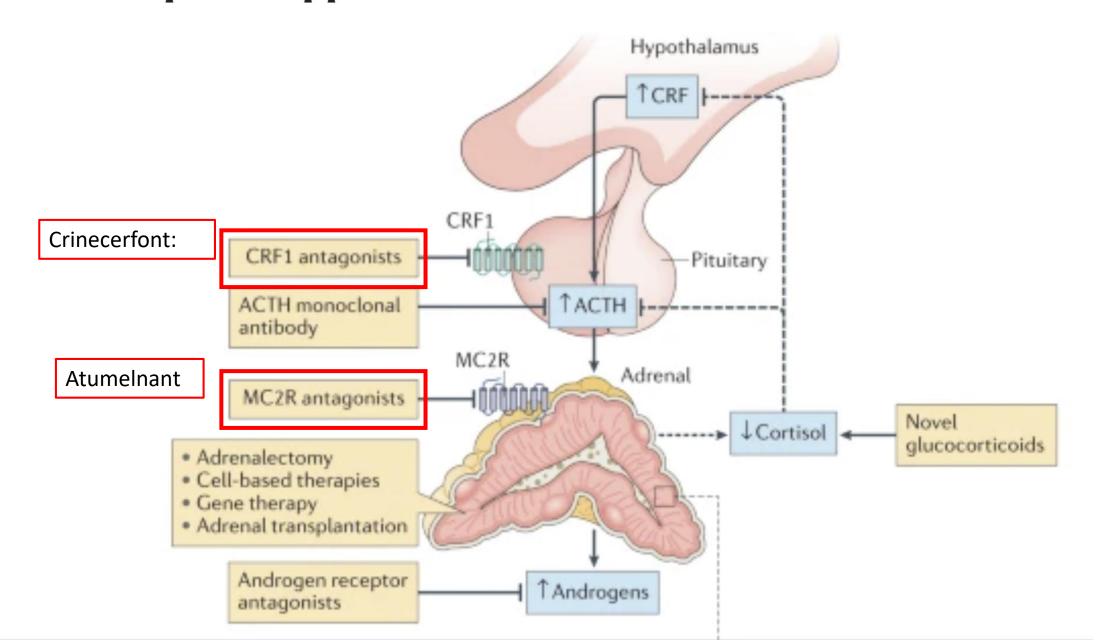

The authors' full names, academic degrees, and affiliations are listed in the Appendix. Dr. Auchus can be contacted at rauchus@med.umich.edu or at the Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, 5560A MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109.

*The investigators in the CAHtalyst trial are listed in the Supplementary Appendix, available at NEJM.org.


This article was published on June 1, 2024, at NEJM.org.

Percent Change in Glucocorticoid Dose with Maintenance of Androstenedione Control

) Change in 17-Hydroxyprogesterone



N Engl J Med 2024;391:504-514

Summary

 Crinecerfont therapy allowed a reduction in the glucocorticoid dose and maintenance of A4 control in 63% of patients, as compared to 18% of patients in the placebo group

Novel therapeutic approaches in classic CAH. and Cushings disease

AtumeInant (CRN04894) Induces Rapid and Sustained Reductions in Serum and Urine Cortisol in Patients With ACTH-Dependent Cushing Syndrome During a Phase 1b/2a, Single Center, 10-Day, Inpatient, Open-Label Study

Henrik Elenius¹; Raven McGlotten¹; Casey Moore¹; Alejandro Ayala²; Yang Wu²; Peter J. Trainer²; R. Scott Struthers²; Alan Krasner²; Stephen F. Betz²; Lynnette K. Nieman¹

MON-680

¹Section on Translational Endocrinology, NIDDK, NIH, Bethesda, MD, USA; ²Crinetics Pharmaceuticals, Inc., San Diego, CA, USA

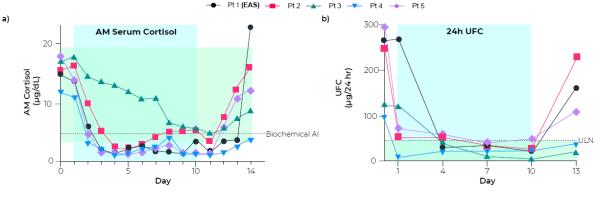
INTRODUCTION

- · Available medical therapies for Cushing syndrome are not optimal, with variable efficacy, delays to target cortisol, and significant adverse reactions
- Atumelnant (CRN04894) is a potent, once-daily, oral, nonpeptide, first-inclass competitive and selective melanocortin type 2 receptor antagonist
- Blocks ACTH-mediated G-protein activation and signaling at the adrenal cortex
- Being developed for the treatment of ACTH-dependent Cushing syndrome (ADCS) and classic congenital adrenal hyperplasia
- We report preliminary data from the first-in-disease, dose-finding study of atumeInant in patients with ADCS (NCT05804669)

METHODS

- Inpatient participants with active ADCS: 24h urine free cortisol (UFC) >1.3× upper limit of normal (ULN), ACTH >10 pg/mL
- Atumelnant 80 mg administered orally, once daily at 08.00 for 10 days (D1-10) followed by a 4-day washout
- Efficacy endpoints included changes in UFC (ULN 45 µg/d), and pre-dose AM serum cortisol and AM plasma ACTH (ULN 46 pg/mL)
- Daily questionnaires assessed adverse events (AEs) and signs and symptoms of adrenal insufficiency (AI) and ADCS

RESULTS: PARTICIPANTS AND EFFICACY


· All 5 participants (4 men; 4 Cushing disease, 1 ectopic ACTH; median age, 47 years [range, 34-55]) completed the study

Outcome (median, range)	Day 1	Day 11	
UFC (μg/d)	252 (99-293)	24 (3.9-51)	
AM cortisol (µg/dL)	14 (10.7-18.1)	1.4 (1.0-4.7)	
AM ACTH (pg/mL)	52.1 (33-1088)	78 (48.8-4045)	

- Each participant developed biochemical evidence of AI (AM cortisol <5 µg/dL) after median 2 doses (range, 1-10), commenced physiologic hydrocortisone (HC) add-back, and completed 10 days of atumelnant
- All participants had biochemical disease control (normal UFC and AM cortisol <5 µg/dL) by day 11, while receiving HC replacement, despite increase in ACTH
- HC was stopped (median day 13; range, 12-18) when AM cortisol was

Cortisol and ACTH Changes During Atumelnant Treatment

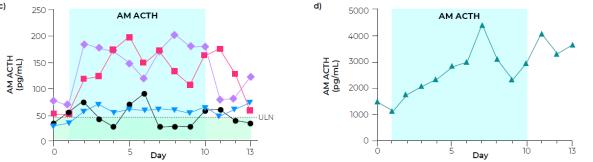
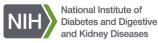


Figure. Cortisol and ACTH levels for each patient (Pt) during atumelnant therapy. Hydrocortisone was given when AM cortisol fell to $<5 \,\mu\text{g}/\text{dL}$ and stopped when cortisol was ≥7 µg/dL. The dotted line represents adrenal insufficiency (cortisol <5 µg/dL) in a), and the ULN in b) and c). In b) day shown for UFC is start of 24h collection. Blue areas indicate treatment days, green areas mark the RR.

- Pt 3, with a slower reduction of serum cortisol, had a markedly higher baseline ACTH
- No loss of efficacy or clinical seguelae related to compensatory rises in ACTH caused by cortisol lowering. No change in ACTH seen in participant with ectopic ACTH syndrome

RESULTS: IMPROVEMENT IN CS SYMPTOMS

- Improvement in Cushing symptoms/signs: insomnia (4/4 pts), trouble concentrating (4/5), anxiety (3/4), tiredness (3/4), hypertension (3/5), brain fog (3/5), bloating (2/4)
- Resolution of neutrophilia (3/3), leukocytosis (2/2), low testosterone (3/4)


RESULTS: ADVERSE EVENTS

- New headache + anorexia and/or nausea (4/5 pts). Most side effects improved with HC add-back
- Serious adverse events included AI (expected and reported per protocol) and one non-treatment related transient GI bleed on day 29
- Two participants had transient, minor elevations in serum creatinine (<1.2 × ULN). Two participants had small increases in ALT (<1.5 × ULN). Notably both had preexisting steatosis

CONCLUSIONS

- The first 5 patients with ADCS to receive once-daily, oral atumelnant experienced rapid lowering of serum and urine cortisol, leading to adrenal insufficiency and improvement or resolution of some signs and symptoms of ADCS
- The observed compensatory increase in ACTH was not associated with loss of efficacy or clinical sequelae
- Atumelnant was generally well-tolerated
- This ongoing study will explore further the relationship between atumelnant dose, including lower doses, and therapeutic response

ACKNOWLEDGMENTS

A joint Clinical Trial Agreement with Crinetics

This work was supported by the NIDDK intramural program

Pharmaceutical, Inc., supports this work

Atumelnant (CRN04894) Induces Rapid and Sustained Reductions in Serum and Urine Cortisol in Patients With ACTH-Dependent Cushing Syndrome During a Phase 1b/2a, Single Center, 10-Day, Inpatient, Open-Label Study

Henrik Elenius'; Raven McGlotten'; Casey Moore'; Alejandro Ayala'; Yang Wu'; Peter J. Trainer'; R. Scott Struthers'; Alan Krasner'; Stephen F. Betz'; Lynnette K. Nieman'

MON-680

¹Section on Translational Endocrinology, NIDDK, NIH, Bethesda, MD, USA; ²Crinetics Pharmaceuticals, Inc., San Diego, CA, USA

RESULTS: IMPROVEMENT IN CS SYMPTOMS

- Improvement in Cushing symptoms/signs: insomnia (4/4 pts), trouble concentrating (4/5), anxiety (3/4), tiredness (3/4), hypertension (3/5), brain fog (3/5), bloating (2/4)
- Resolution of neutrophilia (3/3), leukocytosis (2/2), low testosterone (3/4)

RESULTS: ADVERSE EVENTS

- New headache + anorexia and/or nausea (4/5 pts). Most side effects improved with HC add-back
- Serious adverse events included AI (expected and reported per protocol)
- Each participant developed biochemical evidence of AI (AM cortisol <5 µg/dL) after median 2 doses (range, 1-10), commenced physiologic hydrocortisone (HC) add-back, and completed 10 days of atumelnant
- All participants had biochemical disease control (normal UFC and AM cortisol <5 µg/dL) by day 11, while receiving HC replacement, despite increase in ACTH

Original Research

Randomized double-blind placebo-controlled trial on levothyroxine and liothyronine combination therapy in totally thyroidectomized subjects: the LEVOLIO study

Giulia Brigante, 1,2,* Daniele Santi, 1,2 Gisella Boselli, 1 Gianluca Margiotta, 1 Rossella Corleto, 1 Maria Laura Monzani, 1,2 Andrea Craparo, 1 Michela Locaso, 1 Samantha Sperduti, 1,3 Neena Roy, 1 Livio Casarini, 1,3 Tommaso Trenti, 4 Simonetta Tagliavini, 4 Maria Cristina De Santis, 4 Laura Roli, 4 Vincenzo Rochira, 1,2 and Manuela Simoni, 2,3 b

¹Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy

²Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy

³Center for Genomic Research, University of Modena and Reggio Emilia, 41126 Modena, Italy

⁴Department of Laboratory Medicine and Anatomy Pathology, Azienda USL Modena, 41126 Modena, Italy

^{*}Corresponding author: Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, OCSAE, Via P. Gardini 1355, 41126 Modena, Italy. Email: giulia.brigante@unimore.it

The Problem: from thyroid patients:

MY THYROID

IS DEAD OR DYING OR GONE

MY FREE T3 IS AT RISK

Hoermann, et al, "Relational Stability" Frontiers in Endocrinology 2016; 7: 142


I Don't convert T4 well

HELP OPTIMIZE MY FREE T3

NORMAL-IZING MY
WON'T HELP

Midgley et al "Variation in the response" Endocr Connect. 2015 Dec 1; 4(4)

Larisch, et al, "Symtpomatic Relief" Exp Clin Endocrinol Diabetes. 2018 Sep;126(9)

- The problem is your doctor
- They only spend an hour in their medical course learning about the thyroid
- They don't know any better
- It is a shame that we have to fight to get what our bodies need

Weak guidelines

ATA and ETA: LT4 therapy of choice in hypothyroidism; do not support combined use due to insufficient evidence from controlled trials, and lack of long term LT3 safety data; and unavailability of LT3 formulations that mirror natural physiology

BTA: L-T4/L-T3 combination therapy in patients with hypothyroidism should not be used routinely.

Consider as an **experimental approach** if persistent complaints despite TSH in ref range

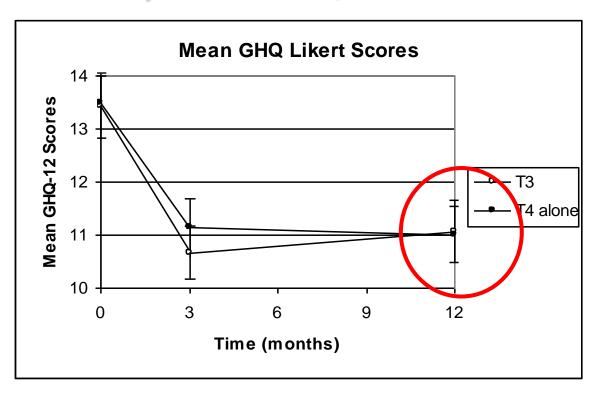
Open and **balanced discussion** of benefits, likely risks of over-replacement and lack of long-term safety data

Discontinue if no improvement after 3 months

Aim of Levolio

- To evaluate the effect of combination therapy with LT4 + LT3 on peripheral tissues, as reflected by sex hormone binding globulin (SHBG) levels, in totally thyroidectomized patients without residual thyroid function
- Achieved by partially replacing LT4 with customized twice-daily doses of LT3 (respecting circadian rhythm and the physiological T3/T4 ratio)
- Changes in other tissue markers and quality of life
- DIO2- rs225014 and MCT10-rs17606253 genetic variant effects

Why these genes?


Previous studies on T3 from 2005 (!)

- Watts study (Weston Area T4T3 study) (2005)
- N=697
- Reduced their thyroxine dose by 50mcg

- Added a capsule of either 50mcg thyroxine
- 10mcg liothyronine (blind and randomised)
- Measured general health (GHQ 12) score 0 to 36 (36=very tired)

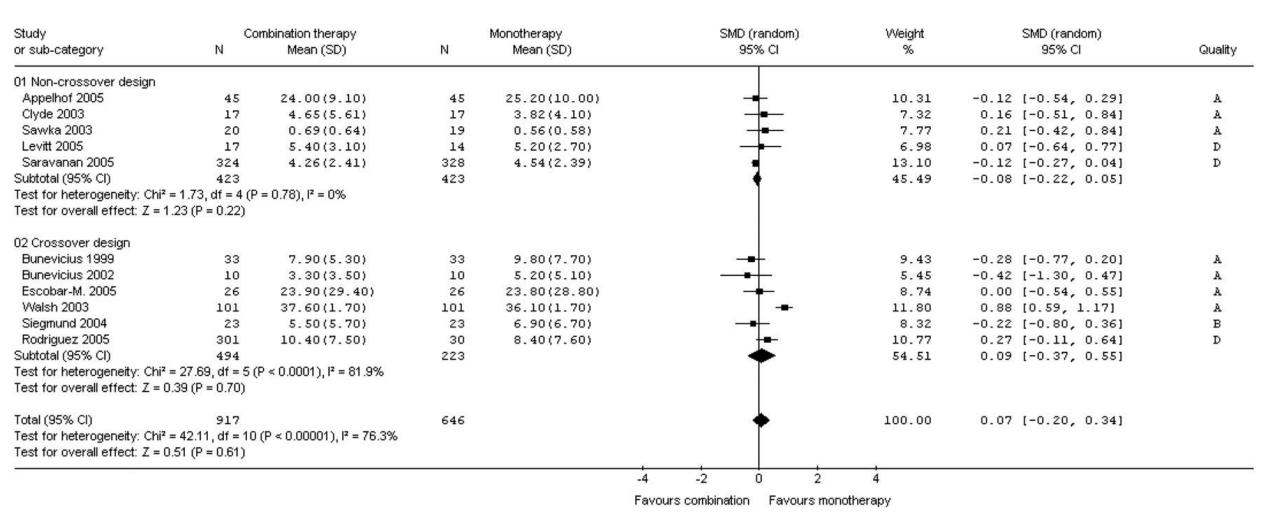
Everybody benefits, even those only on T4...

WATTS study – T4 vs T4/T3 n=697

- 10 ug T3 substituted for 50ug T4
- Note persistent placebo effect

Partial Substitution of Thyroxine (T_4) with Tri-Iodothyronine in Patients on T_4 Replacement Therapy: Results of a Large Community-Based Randomized Controlled Trial

Ponnusamy Saravanan, Dawn J. Simmons, Rosemary Greenwood, Tim J. Peters, and Colin M. Dayan


Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (P.S., D.J.S., C.M.D.) and Academic Unit of Primary Health Care, Department of Community-Based Medicine (T.J.P.), University of Bristol, Bristol BS1 3NY, United Kingdom; and Research and Development Support Unit (R.G.), Bristol Royal Infirmary, Bristol BS2 8HW, United Kingdom

Conflicting results have recently been published about the benefits of combined T_4 and T_3 in treating hypothyroid patients. However, these studies may have been underpowered to detect differences in psychological well-being specifically related to T_4 replacement. We conducted a large, double-blind, randomized controlled trial of partial substitution of $50~\mu g~T_4$ by $10~\mu g~T_3~vs$. the original dose of T_4 in 697 hypothyroid patients. Thyroid function showed a rise in TSH (132%), a fall in free T_4 (35%, P < 0.001), and unchanged basal free T_3 levels (P = 0.92). At 3 months, there was a large (39%) placebo effect improvement in psychiatric caseness defined by the General Health Questionnaire (GHQ) 12 score in the control group compared with baseline, and this was sustained at 12 months. Differences vs. the intervention (T_3) group were more modest

with improvements in GHQ caseness (odds ratio, 0.61; 95% confidence interval, 0.42, 0.90; P=0.01) and Hospital Anxiety and Depression questionnaire-anxiety scores at 3 months (P<0.03) but not GHQ Likert scores, Hospital Anxiety and Depression questionnaire-depression, thyroid symptoms, or visual analog scales of mood and the initial differences were lost at 12 months. These results may be consistent with a subgroup of patients showing transient improvement after partial substitution with T_3 but do not provide conclusive evidence of specific benefit from partial substitution of T_4 by T_3 in patients on T_4 replacement. They also emphasize the large and sustained placebo effect that can follow changes in thyroid hormone administration. (J Clin Endocrinol Metab 90: 805–812, 2005)

2005: T3=£4/month T4=£1

No benefit....meta-analysis

Thyroxine-Triiodothyronine Combination Therapy Versus Thyroxine Monotherapy for Clinical Hypothyroidism: Meta-Analysis of Randomized Controlled Trials

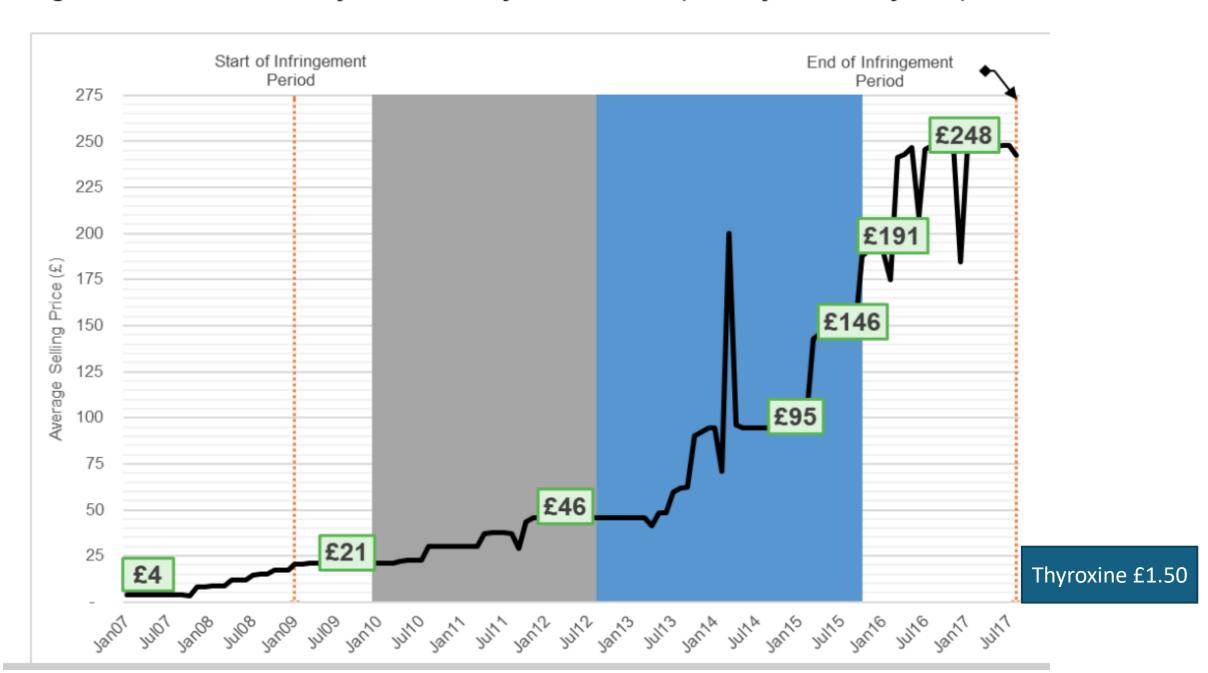
Simona Grozinsky-Glasberg, Abigail Fraser, Ethan Nahshoni, Abraham Weizman, and Leonard Leibovici

Endocrine Institute (S.G.-G.) and Department of Medicine E (A.F., L.L.), Rabin Medical Center, and Geha Mental Health Center (E.N., A.W.), Petah-Tiqva 49100, Israel; and Sackler Faculty of Medicine (E.N., A.W., L.L.), Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

Context: In some patients symptoms of hypothyroidism persist despite therapy with T_4 .

Objective: The objective of the study was to compare the effectiveness of T_4 - T_3 combination vs. T_4 monotherapy for the treatment of clinical hypothyroidism in adults.

Data Sources: PubMed, EMBASE, LILACS, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched in September 2005. References of all included trials were scanned for additional studies. We put no restrictions on language, year of publication, or publication status.


Study Selection: All randomized trials that compared the effectiveness of T_4 - T_3 combination vs. T_4 monotherapy for the treatment of clinical hypothyroidism in adults were included.

Data Extraction: The data were extracted by two independent reviewers.

Data Synthesis: We included 11 studies, in which 1216 patients were randomized. No difference was found in the effectiveness of combination vs. monotherapy in any of the following symptoms: bodily pain [standardized mean difference (SMD) 0.00, 95% confidence interval (CI) -0.34, 0.35], depression (SMD 0.07, 95% CI -0.20, 0.34), anxiety (SMD 0.00, 95% CI -0.12, 0.11), fatigue (SMD -0.12, 95% CI -0.33, 0.09), quality of life (SMD 0.03, 95% CI -0.09, 0.15), body weight, total serum cholesterol, triglyceride levels, low-density lipoprotein, and high-density lipoprotein. Adverse events did not differ between regimens.

Conclusions: T₄ monotherapy should remain the treatment of choice for clinical hypothyroidism. (*J Clin Endocrinol Metab* 91: 2592-2599, 2006) 2006: T3=£4/month T4=£1

Figure 1.1: Advanz's monthly ASP for Liothyronine Tablets (January 2007 – July 2017)

January 2020

North Central London Joint Formulary Committee

Oral liothyronine in Primary Hypothyroidism: Position Statement

New patients

Prescribers in primary care should not initiate liothyronine (T3) for adults, children and young people.

Consultant NHS Endocrinologists may offer liothyronine in rare situations for patients who meet <u>national criteria</u>. There is no obligation for endocrinologists to offer liothyronine owing to the limited evidence of benefit over levothyroxine (T4) monotherapy and uncertainty over long-term safety.

GPs should only take on prescribing of liothyronine where the treatment is recommended by a consultant NHS Endocrinologist, after a successful trial has been carried out. GPs should not take on prescribing for patients initiated on liothyronine in private clinics, abroad, or via other self-funded routes.

Existing patients

All patients prescribed liothyronine, either alone or in combination with levothyroxine, should be <u>reviewed</u> by a consultant NHS Endocrinologist with consideration given to switching to levothyroxine monotherapy where clinically appropriate.

This position statement does not apply to liothyronine as an adjuvant to radioactive iodine.

A Common Variation in Deiodinase 1 Gene *DIO1* Is Associated with the Relative Levels of Free Thyroxine and Triiodothyronine

Vijay Panicker, Christie Cluett, Beverley Shields, Anna Murray, Kirstie S. Parnell, John R. B. Perry, Michael N. Weedon, Andrew Singleton, Dena Hernandez, Jonathan Evans, Claire Durant, Luigi Ferrucci, David Melzer, Ponnusamy Saravanan, Theo J. Visser, Graziano Ceresini, Andrew T. Hattersley, Bijay Vaidya, Colin M. Dayan, and Timothy M. Frayling

Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology (V.P., P.S., C.M.D.) and Academic Unit of Psychiatry (J.E., C.D.), University of Bristol, Bristol BS1 3NY, United Kingdom; Faculty of Medicine, Dentistry, and Health Sciences (V.P.), University of Western Australia, Perth 6009, Australia; Genetics of Complex Traits (V.P., C.C., B.S., A.M., K.S.P., J.R.B.P., M.N.W., D.M., A.T.H., T.M.F.), Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX1 2LU, United Kingdom; Molecular Genetics Unit (A.S., D.H.) and Longitudinal Studies Section (L.F.), Clinical Research Branch, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892; Clinical Sciences Research Unit (P.S.), University of Warwick, Warwick CV2 2DX United Kingdom; Department of Internal Medicine (T.J.V.), Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands; Department of Internal Medicine and Biomedical Sciences (G.C.), Section of Geriatrics, University of Parma, 43100 Parma, Italy; and Department of Endocrinology (B.V.), Royal Devon and Exeter Hospital, Exeter EX2 5DW, United Kingdom

2008

Introduction: Genetic factors influence circulating thyroid hormone levels, but the common gene variants involved have not been conclusively identified. The genes encoding the iodothyronine deiodinases are good candidates because they alter the balance of thyroid hormones. We aimed to thoroughly examine the role of common variation across the three deiodinase genes in relation to thyroid hormones.

TABLE 2. The fT_3/fT_4 ratio by genotype in WATTs cohort

TT Common homozygous		TC Heterozygous	TC Heterozygous		CC Minor homozygous			
SNP	Mean fT ₃ /fT ₄ (95% CI)	n	Mean fT ₃ /fT ₄ (95% CI)	n	Mean fT ₃ /fT ₄ (95% CI)	n	Unadjusted	Adjusted
DIO1								
rs11206237	0.187 (0.183, 0.192)	399	0.187 (0.180, 0.195)	130	0.192 (0.177, 0.207)	16	0.82	0.96
rs11206244	0 .193 (0.187, 0.199)	239	0 186 (0.181, 0.192)	238	0.175 (0.166, 0.185)	69	0.005	0.004
rs2235544	(0.177 (0.171, 0.184)	143	0.189 0.184, 0.195)	288	0.196 (0.187, 0.205)	111	0.001	0.001
rs2268181	0.187 (0.182, 0.192)	387	0.189 (0.182, 0.196)	140	0.192 (0.178, 0.205)	19	0.63	0.88
rs2294511	0.192 (0.186, 0.197)	240	0.185 (0.179, 0.190)	248	0.183 (0.171, 0.195)	56	0.08	0.08
rs2294512	0.186 (0.180, 0.191)	252	0.186 (0.180, 0.191)	245	0.205 (0.190, 0.220)	50	0.06	0.02
rs4926616	0.189 (0.183, 0.194)	245	0.188 (0.182, 0.194)	236	0.186 (0.174, 0.197)	56	0.67	0.68
rs731828	0.185 (0.179, 0.191)	183	0.189 (0.183, 0.194)	278	0.190 (0.179, 0.201)	84	0.32	0.19
rs7527713	0.187 (0.182, 0.192)	362	0.189 (0.182, 0.196)	157	0.184 (0.170, 0.198)	26	0.96	0.75
DIO2								
rs225011	0.184 (0.177, 0.190)	172	0.189 (0.183, 0.195)	264	0.190 (0.182, 0.198)	107	0.22	0.24
rs225014	0.186 (0.180, 0.192)	223	0.187 (0.181, 0.193)	236	0.193 (0.184, 0.203)	87	0.25	0.28
rs225015	0.187 (0.181, 0.193)	237	0.187 (0.181, 0.193)	236	0.193 (0.183, 0.204)	71	0.42	0.46
DIO3								
rs17716499	0.191 (0.185, 0.196)	202	0.184 (0.178, 0.189)	248	0.193 (0.183, 0.202)	95	0.89	0.97
rs7150269	0.191 (0.184, 0.197)	169	0.186 (0.180, 0.192)	254	0.187 (0.179, 0.196)	121	0.48	0.50
rs8011440	0.190 (0.184, 0.195)	215	0.186 (0.180, 0.192)	246	0.188 (0.178, 0.199)	85	0.65	0.54
rs945006	0.187 (0.183, 0.192)	438	0.187 (0.178, 0.196)	92	0.200 (0.156, 0.243)	10	0.69	0.55

CI, Confidence interval.

^a Adjusted for age and sex.

A Common Variation in Deiodinase 1 Gene *DIO1* Is Associated with the Relative Levels of Free Thyroxine and Triiodothyronine

Vijay Panicker, Christie Cluett, Beverley Shields, Anna Murray, Kirstie S. Parnell, John R. B. Perry, Michael N. Weedon, Andrew Singleton, Dena Hernandez, Jonathan Evans, Claire Durant, Luigi Ferrucci, David Melzer, Ponnusamy Saravanan, Theo J. Visser, Graziano Ceresini, Andrew T. Hattersley, Bijay Vaidya, Colin M. Dayan, and Timothy M. Frayling

Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology (V.P., P.S., C.M.D.) and Academic Unit of Psychiatry (J.E., C.D.), University of Bristol, Bristol BS1 3NY, United Kingdom; Faculty of Medicine, Dentistry, and Health Sciences (V.P.), University of Western Australia, Perth 6009, Australia; Genetics of Complex Traits (V.P., C.C., B.S., A.M., K.S.P., J.R.B.P., M.N.W., D.M., A.T.H., T.M.F.), Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX1 2LU, United Kingdom; Molecular Genetics Unit (A.S., D.H.) and Longitudinal Studies Section (L.F.), Clinical Research Branch, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892; Clinical Sciences Research Unit (P.S.), University of Warwick, Warwick CV2 2DX United Kingdom; Department of Internal Medicine (T.J.V.), Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands; Department of Internal Medicine and Biomedical Sciences (G.C.), Section of Geriatrics, University of Parma, 43100 Parma, Italy; and Department of Endocrinology (B.V.), Royal Devon and Exeter Hospital, Exeter EX2 5DW, United Kingdom

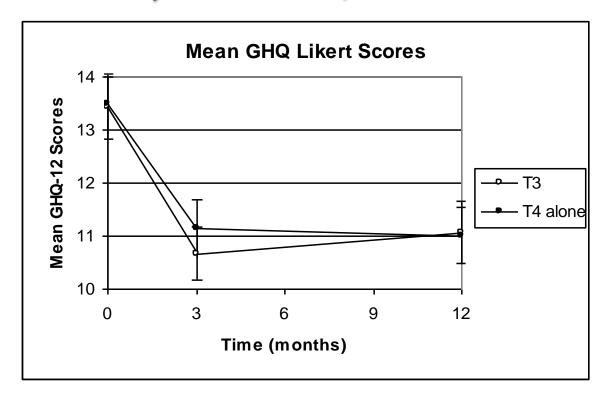
2008

Introduction: Genetic factors influence circulating thyroid hormone levels, but the common gene variants involved have not been conclusively identified. The genes encoding the iodothyronine deiodinases are good candidates because they alter the balance of thyroid hormones. We aimed to thoroughly examine the role of common variation across the three deiodinase genes in relation to thyroid hormones.

Endocrine Care

Common Variation in the DIO2 Gene Predicts Baseline Psychological Well-Being and Response to Combination Thyroxine Plus Triiodothyronine Therapy in Hypothyroid Patients

Vijay Panicker, Ponnusamy Saravanan, Bijay Vaidya, Jonathan Evans, Andrew T. Hattersley, Timothy M. Frayling, and Colin M. Dayan


Methods: We analyzed common variants in the three deiodinase genes vs. baseline psychological morbidity and response to T_4/T_3 in 552 subjects on T_4 from the Weston Area T_4 T_3 Study (WATTS). Primary outcome was improvement in psychological well-being assessed by the General Health Questionnaire 12 (GHQ-12).

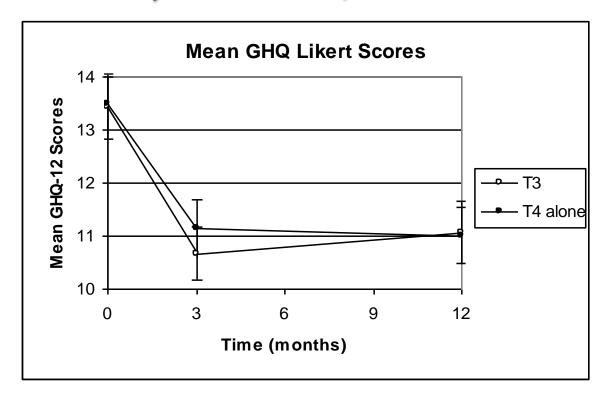
Results: The rarer CC genotype of the rs225014 polymorphism in the deiodinase 2 gene (*DIO2*) was present in 16% of the study population and was associated with worse baseline GHQ scores in patients on T_4 (CC vs. TT genotype: 14.1 vs. 12.8, P = 0.03). In addition, this genotype showed greater improvement on T_4/T_3 therapy compared with T_4 only by 2.3 GHQ points at 3 months and 1.4 at 12 months (P = 0.03 for repeated measures ANOVA). This polymorphism had no impact on circulating thyroid hormone levels.

Conclusions: Our results require replication but suggest that commonly inherited variation in the DIO2 gene is associated both with impaired baseline psychological well-being on T_4 and enhanced response to combination T_4/T_3 therapy, but did not affect serum thyroid hormone levels. (J Clin Endocrinol Metab 94: 1623–1629, 2009)

Everybody benefits...

WATTS study – T4 vs T4/T3 n=697

- 10 ug T3 substituted for 50ug T4
- Note persistent placebo effect

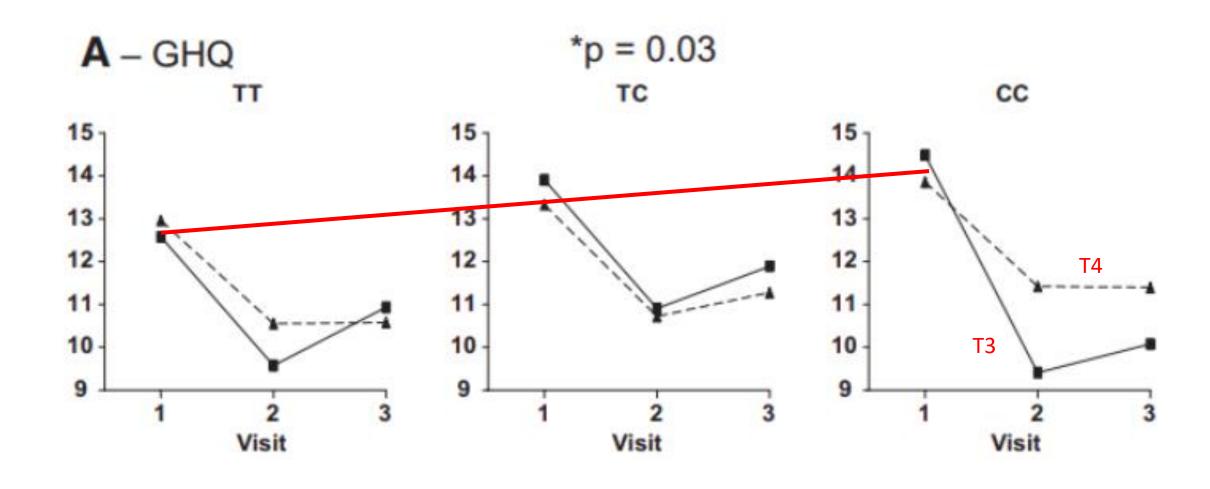

TABLE 2. Relationship between genotype and GHQ-12 scores at baseline in all studied SNPs

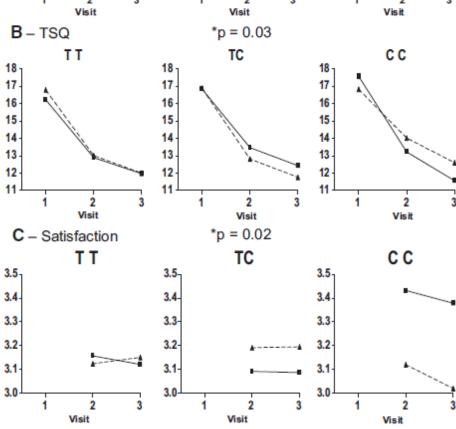
	TT Common homozygous		TC	Heterozygous	CC M	inor homozygous	
	n	Mean (95% CI)	n	Mean (95% CI)	n	Mean (95% CI)	P
DIO1							
rs11206237	399	13.4 (12.9, 13.9)	130	13.5 (12.6, 14.4)	16	11.7 (9.5, 13.9)	0.56
rs11206244	239	13.2 (12.5, 13.8)	238	13.6 (12.9, 14.3)	69	13.2 (12.1, 14.2)	0.70
rs2235544	143	13.6 () 2.8, 14.4)	288	13.4 (12.8, 14.0)	111	13.1 (12.2, 14.1)	0.50
rs2268181	387	13.4 (12.9, 14.0)	140	13.3 (12.5, 14.2)	19	11.9 (10.0, 13.9)	0.37
rs2294511	240	13.2 (12.6, 13.8)	248	13.6 (12.9, 14.3)	56	13.2 (11.9, 14.5)	0.71
rs2294512	252	13.7 (13.1, 14.4)	245	13.0 (12.3, 13.7)	50	13.2 (11.8, 14.6)	0.18
rs4926616	245	13.2 (12.5, 13.8)	236	13.7 (13.0, 14.4)	56	13.1 (11.7, 14.5)	0.63
rs731828	183	13.4 (12.7, 14.1)	278	13.2 (12.6, 13.8)	84	13.8 (12.7, 14.9)	0.70
rs7527713	362	13.5 (12.9, 14.0)	157	13.1 (12.3, 13.9)	26	13.0 (11.1, 15.0)	0.46
DIO2							
rs225011	172	12.6 (11.9, 13.3)	264	13.7 (13.1, 14.3)	107	13.7 (12.5, 14.9)	0.06
rs225014	223	12.8 (12.2, 13.4)	236	13.6 13.0, 14.3)	87	14.1 12.8, 15.5)	0.02
rs225015	237	12.9 (12.3, 13.5)	236	13.6 (12.9, 14.3)	71	14.3 (12.8, 15.8)	0.03
DIO3							
rs17716499	202	12.9 (12.3, 13.6)	248	13.6 (12.9, 14.3)	95	13.7 (12.7, 14.6)	0.19
rs7150269	121	13.6 (12.6, 14.5)	254	13.4 (12.8, 14.1)	169	13.1 (12.4, 13.8)	0.44
rs8011440	215	13.1 (12.5, 13.8)	246	13.5 (12.8, 14.2)	85	13.4 (12.3, 14.5)	0.51
rs945006	438	13.4 (12.9, 13.8)	92	13.4 (12.3, 14.4)	10	13.4 (9.7, 17.1)	0.98

Bold values indicate P < 0.05. CI, Confidence interval.

Everybody benefits...

WATTS study – T4 vs T4/T3 n=697


- 10 ug T3 substituted for 50ug T4
- Note persistent placebo effect


TABLE 2. Relationship between genotype and GHQ-12 scores at baseline in all studied SNPs

	TT Con	Common homozygous		Heterozygous	CC M	linor homozygous	
	n	Mean (95% CI)	n	Mean (95% CI)	n	Mean (95% CI)	P
DIO1							
rs11206237	399	13.4 (12.9, 13.9)	130	13.5 (12.6, 14.4)	16	11.7 (9.5, 13.9)	0.56
rs11206244	239	13.2 (12.5, 13.8)	238	13.6 (12.9, 14.3)	69	13.2 (12.1, 14.2)	0.70
rs2235544	143	13.6 (12.8, 14.4)	288	13.4 (12.8, 14.0)	111	13.1 (12.2, 14.1)	0.50
rs2268181	387	13.4 (12.9, 14.0)	140	13.3 (12.5, 14.2)	19	11.9 (10.0, 13.9)	0.37
rs2294511	240	13.2 (12.6, 13.8)	248	13.6 (12.9, 14.3)	56	13.2 (11.9, 14.5)	0.71
rs2294512	252	13.7 (13.1, 14.4)	245	13.0 (12.3, 13.7)	50	13.2 (11.8, 14.6)	0.18
rs4926616	245	13.2 (12.5, 13.8)	236	13.7 (13.0, 14.4)	56	13.1 (11.7, 14.5)	0.63
rs731828	183	13.4 (12.7, 14.1)	278	13.2 (12.6, 13.8)	84	13.8 (12.7, 14.9)	0.70
rs7527713	362	13.5 (12.9, 14.0)	157	13.1 (12.3, 13.9)	26	13.0 (11.1, 15.0)	0.46
DIO2		THE PARTY OF THE PARTY					
rs225011	172	12.6 (11.9, 13.3)	264	13.7 (13.1, 14.3)	107	13.7 (12.5, 14.9)	0.06
rs225014	223	12.8 (12.2, 13.4)	236	13.6 [13.0, 14.3)	87	14.1 (12.8, 15.5)	0.02
rs225015	237	12.9 (12.3, 13.5)	236	13.6 (12.9, 14.3)	71	14.3 (12.8, 15.8)	0.03
DIO3				200 CC 12 THE 200 CO 12		and the state of t	
rs17716499	202	12.9 (12.3, 13.6)	248	13.6 (12.9, 14.3)	95	13.7 (12.7, 14.6)	0.19
rs7150269	121	13.6 (12.6, 14.5)	254	13.4 (12.8, 14.1)	169	13.1 (12.4, 13.8)	0.44
rs8011440	215	13.1 (12.5, 13.8)	246	13.5 (12.8, 14.2)	85	13.4 (12.3, 14.5)	0.51
rs945006	438	13.4 (12.9, 13.8)	92	13.4 (12.3, 14.4)	10	13.4 (9.7, 17.1)	0.98

Bold values indicate P < 0.05. CI, Confidence interval.

J Clin Endocrinol Metab, May 2009, 94(5):1623-1629

FIG. 1. Response to therapy by genotype rs225014 as measured by GHQ (A), TSQ (B), and satisfaction score (C). Squares and continuous line, T_a/T_3 group; triangles and dashed line, T_4 -only group. P values reflect the significance of an effect of the CC genotype on difference in scores by treatment arm using repeated-measures ANOVA. *, P < 0.05. There was a significant effect of the interaction between the CC genotype and treatment arm at follow-up (visits 2 and 3) on GHQ scores, TSQ scores, and satisfaction. There are no baseline (visit 1) scores for satisfaction with therapy (C) because this was not assessed at baseline. For GHQ and TSQ scores, higher scores indicate worse well-being, whereas for satisfaction higher scores indicate more satisfied.

effect was suggested by the graphs (Fig. 1) and has been proposed previously (29). For satisfaction score, no baseline score was adjusted for because there was no baseline assessment. No correction was made for multiple testing because, despite being the largest study to date, it is still underpowered to detect all but very large differential gene-treatment effects. Instead, we have chosen to report the *P* values and associations, which should be considered suggestive, and have qualified our findings by stating clearly that the results need replicating as a risk of type I statistical error exists. Analyses were performed on Stata version 9.0 (www.stata.com) and SPSS version 14.0 (www.spss.com).

all of those from DIO1 and DIO3 did not show any association. Because the two D2 SNPs that had showed an association, rs225014 and rs225015, are in strong linkage disequilibrium with an r² of 0.88 in this population, and rs225014 is also in linkage disequilibrium with the third SNP studied in this gene, rs225011 (r² of 0.59), further analysis is shown on rs225014 alone. In this SNP the possible base combinations of thymine (T) and cytosine (C) are TT, TC and CC. For GHQ-12, each Callele of rs225014 was associated with an average increase of 0.71 GHQ points (worse well-being, P for the trend = 0.02) with a difference between the CC and TT alleles of 1.3 points.

Table 3 shows the relationship between rs225014 genotype and baseline psychological well-being for other parameters measured in WATTS. The scores for GHQ-12 from Table 2 are included for comparison. An association with HAD-D (depression) caseness in the same direction as GHO was seen (P = 0.01). Each Callele was associated with a 49% increase in odds of being a HAD-D case (P = 0.01) and as a result caseness was almost twice as great in subjects homozygous for the CC genotype as in subjects with the TT genotype (24 vs. 13%). No significant differences were seen in the other psychological scores, although all the scores appeared to increase in the same direction across the genotypes (Table 3), with the TT

genotype having the lowest score and TC intermediate and CC the worst score. We published previously that rs225014 did not have any detectable effect on baseline thyroid function in this cohort, and hence, this effect appears to be independent of scrum thyroid hormone levels (30).

Genotype and response to therapy

Results of repeated-measures ANOVA for response to treatment by genotype and treatment arm for rs225014 are shown in repeated-measures ANOVA. *, P < 0.05. There was a significant effect of the interaction between the CC genotype and treatment arm at follow-up (visits 2 and 3) on GHQ scores, TSQ scores, and satisfaction. There are no baseline (visit 1) scores for satisfaction with therapy (C) because this was not assessed at baseline. For GHQ and TSQ scores, higher scores indicate worse well-being, whereas for satisfaction higher scores indicate more satisfied.

effect was suggested by the graphs (Fig. 1) and has been proposed previously (29). For satisfaction score, no baseline score was adjusted for because there was no baseline assessment. No correction was made for multiple testing because, despite being the largest study to date, it is still underpowered to detect all but very large differential gene-treatment effects. Instead, we have chosen to report the P values and associations, which should be considered suggestive, and have qualified our findings by stating clearly that the results need replicating as a risk of type I statistical error exists. Analyses were performed on Stata version 9.0 (www.stata.com) and SPSS version 14.0 (www.spss.com).

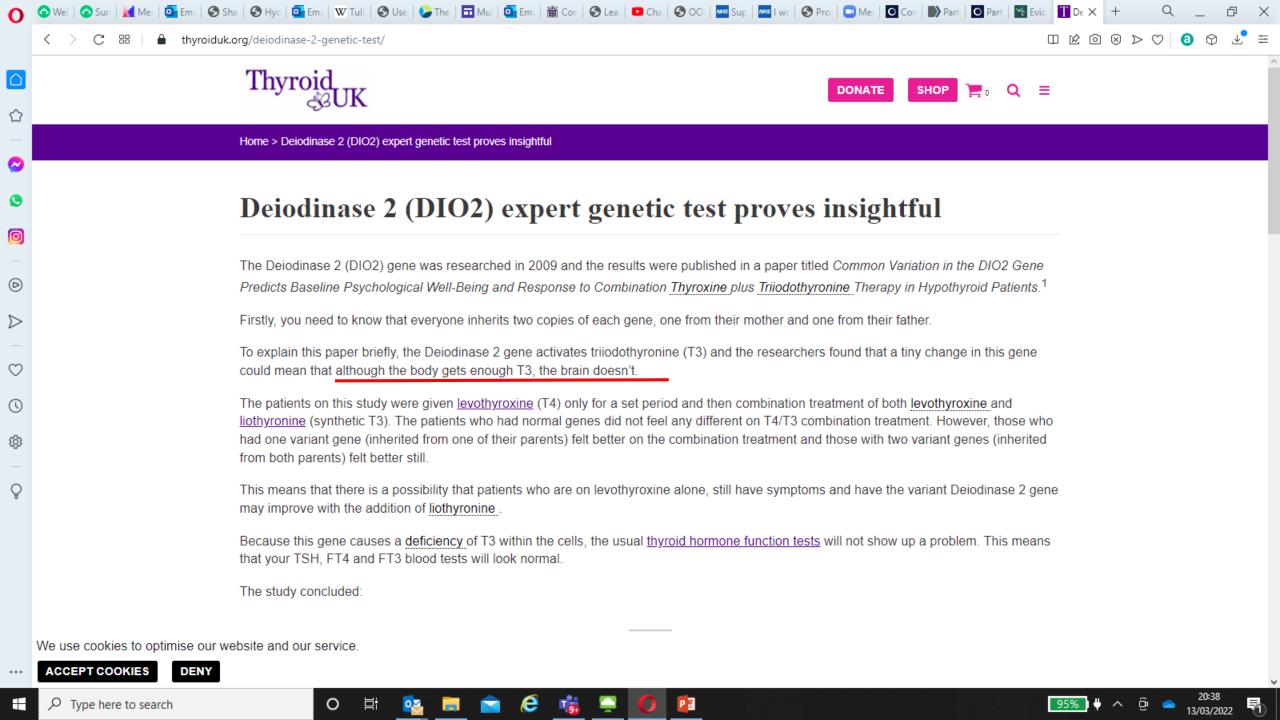
genotype having the worst score have any detect cohort, and her thyroid hormo

Genotype and

Results of roment by genoty Fig. 1. *P* values

Endocrine Care

Common Variation in the DIO2 Gene Predicts Baseline Psychological Well-Being and Response to Combination Thyroxine Plus Triiodothyronine Therapy in Hypothyroid Patients


Vijay Panicker, Ponnusamy Saravanan, Bijay Vaidya, Jonathan Evans, Andrew T. Hattersley, Timothy M. Frayling, and Colin M. Dayan

Methods: We analyzed common variants in the three deiodinase genes vs. baseline psychological morbidity and response to T_4/T_3 in 552 subjects on T_4 from the Weston Area T_4 T_3 Study (WATTS). Primary outcome was improvement in psychological well-being assessed by the General Health Questionnaire 12 (GHQ-12).

exon 3 of the D2 gene resulting in a Thr92Ala substitution

Results: The rarer CC genotype of the rs225014 polymorphism in the deiodinase 2 gene (*DIO2*) was present in 16% of the study population and was associated with worse baseline GHQ scores in patients on T_4 (CC vs. TT genotype: 14.1 vs. 12.8, P = 0.03). In addition, this genotype showed greater improvement on T_4/T_3 therapy compared with T_4 only by 2.3 GHQ points at 3 months and 1.4 at 12 months (P = 0.03 for repeated measures ANOVA). This polymorphism had no impact on circulating thyroid hormone levels.

Conclusions: Our results require replication but suggest that commonly inherited variation in the DIO2 gene is associated both with impaired baseline psychological well-being on T_4 and enhanced response to combination T_4/T_3 therapy, but did not affect serum thyroid hormone levels. (J Clin Endocrinol Metab 94: 1623–1629, 2009)

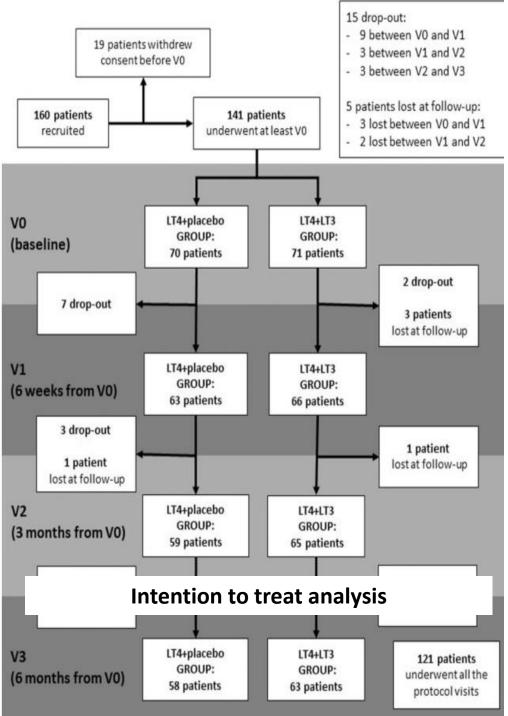
Original Research

Randomized double-blind placebo-controlled trial on levothyroxine and liothyronine combination therapy in totally thyroidectomized subjects: the LEVOLIO study

Giulia Brigante, 1,2,* Daniele Santi, 1,2 Gisella Boselli, 1 Gianluca Margiotta, 1 Rossella Corleto, 1 Maria Laura Monzani, 1,2 Andrea Craparo, 1 Michela Locaso, 1 Samantha Sperduti, 1,3 Neena Roy, 1 Livio Casarini, 1,3 Tommaso Trenti, 4 Simonetta Tagliavini, 4 Maria Cristina De Santis, 4 Laura Roli, 4 Vincenzo Rochira, 1,2 and Manuela Simoni, 2,3 b

¹Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy

²Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy


³Center for Genomic Research, University of Modena and Reggio Emilia, 41126 Modena, Italy

⁴Department of Laboratory Medicine and Anatomy Pathology, Azienda USL Modena, 41126 Modena, Italy

^{*}Corresponding author: Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, OCSAE, Via P. Gardini 1355, 41126 Modena, Italy. Email: giulia.brigante@unimore.it

Methods

- Longitudinal, prospective, double-blind, randomized, placebocontrolled study
- 3 years (From March 2017 to March 2020)
- 160 hypothyroid patients on LT4 therapy following total thyroidectomy
- Thyroxine dose reduced, and drops of either T3 or T4 were added back twice daily

6 months, 4 visits (baseline, 6 weeks, 3 months, 6 months)

Dosing:

- TDD LT4 reduced to 80%, 20% replaced by drops (either LT3 or LT4)
- Both groups: 80% LT4 in the morning as tablet
- [LT4+LT3]: 20% split into BD LT3 am and pm
- [LT4+placebo]: 20% LT4 drops given in am, placebo drops in pm
- Blood tests and dose titration at each visit by one unblinded doctor who never met the patients

Genotyping-V1

■ DIO2-rs225014 and MCT10-rs17606253 variants were genotyped at baseline

Titration- all visits

- TSH testsd at 8 am before Rx, Dose adjustments as required at V1 V3
- (LT4 + LT3): reduction/increase performed on the TTD LT4 (μg) corresponding to the sum of the thyroid hormones prescribed in the previous visit – case by case - new reduced/increased dosage was converted into doses of LT4 and LT3 following a predefined formula
- Aim to maintain to maintain T4/T3 ratio between 13:1 and 20:1

QoL assessment – V0, V2, V3

The Italian version of the ThyPRO

Adherence

- Assessment of the daily compilation of the therapeutic scheme delivered to the patient
- Validated guestionnaire Morisky Medication Adherence Scale

Results

 121 patients [63 in the LT4 + LT3 and 58 in the LT4 + placebo group] underwent all visits

Primary Outcome: changes in tissue markers of peripheral thyroid function

 No significant differences in tissue markers were observed between the [LT4 + LT3] and [LT4 + placebo] groups at the end of treatment

• SHBG was slightly higher in the [LT4 +LT3 group] (52.9 \pm 25.8 nmol/L) compared to the [LT4+placebo] (48.9 \pm 33.1 nmol/L) (ns)

Secondary Outcomes: TFTs

	Vis	Visit	3 (6 months)	Comparison between groups at visit 3			
	LT4 + LT3 § (n = 71				Mean difference	P	95% CI
TSH (μIU/mL)	1.4 ± 1.5	1.1 ± 1.2	1.3 ± 2.7	2.6 ± 5.3	-1.3	.08	-2.8, 0.2
fT3 (pg/mL)	3.0 ± 0.3	3.0 ± 0.3	3.2 ± 0.5	2.9 ± 0.4	0.3	.002	0.1, 0.5
fT4 (pg/mL)	11.9 ± 2.2	11.7 ± 1.8	10.4 ± 2.2	11.3 ± 2.0	-0.9	.02	-1.7, -0.2
Total-CH (mg/dL)	206.5 ± 33.3	203.4 ± 48.0	210.0 ± 36.6	219.6 ± 44.7	-9.5	.21	-24.4, 5.3
HDL cholesterol (mg/dL)	52.1 ± 13.2	50.2 ± 13.4	54.9 ± 14.4	54.8 ± 14.0	0.1	.98	-4.7, 5.0
Triglycerides (mg/dL)	108.0 ± 67.2	105.2 ± 79.6	100.9 ± 70.8	110.0 ± 71.2	-9.1	.49	-35, 16.8
CTX (ng/dL)	9.6 ± 7.1	11.4 ± 8.7	12.3 ± 10.0	11.7 ± 10.1	0.5	.79	-3.2, 4.2
Osteocalcin (ng/mL)	17.3 ± 4.6	17.4 ± 4.7	18.3 ± 4.5	17.0 ± 4.9	1.3	.14	-0.4, 3.0
Bone alkaline phosphatase (µg/L)	11.3 ± 3.9	11.8 ± 3.6	11.7 ± 4.1	11.5 ± 3.6	0.1	.86	-1.3, 1.6

So TSH went up a bit (1.1 to 2.6) in those on placebo but not in those on T4 and T3 So you might expect those on T3 to feel "better"

Secondary Outcomes: TFTs

	Visit 0 (baseline)			it 3 (6 months)	Comparison between groups at visit 3		
	LT4 + LT3; $(n = 71)$				Mean difference	P	95% CI
TSH (μIU/mL)	1.4 ± 1.5	1.1 ± 1.2	1.3 ± 2.7	2.6 ± 5.3	-1.3	.08	-2.8, 0.2
fT3 (pg/mL)	3.0 ± 0.3	3.0 ± 0.3	3.2 ± 0.5	2.9 ± 0.4	0.3	.002	0.1, 0.5
fT4 (pg/mL)	11.9 ± 2.2	11.7 ± 1.8	10.4 ± 2.2	11.3 ± 2.0	-0.9	.02	-1.7, -0.2
Total-CH (mg/dL)	206.5 ± 33.3	203.4 ± 48.0	210.0 ± 36.6	219.6 ± 44.7	-9.5	.21	-24.4, 5.3
HDL cholesterol (mg/dL)	52.1 ± 13.2	50.2 ± 13.4	54.9 ± 14.4	54.8 ± 14.0	0.1	.98	-4.7, 5.0
Triglycerides (mg/dL)	108.0 ± 67.2	105.2 ± 79.6	100.9 ± 70.8	110.0 ± 71.2	-9.1	.49	-35, 16.8
CTX (ng/dL)	9.6 ± 7.1	11.4 ± 8.7	12.3 ± 10.0	11.7 ± 10.1	0.5	.79	-3.2, 4.2
Osteocalcin (ng/mL)	17.3 ± 4.6	17.4 ± 4.7	18.3 ± 4.5	17.0 ± 4.9	1.3	.14	-0.4, 3.0
Bone alkaline phosphatase (µg/L)	11.3 ± 3.9	11.8 ± 3.6	11.7 ± 4.1	11.5 ± 3.6	0.1	.86	-1.3, 1.6

So T3 went down a bit (3.0 to 2.9) in those on placebo but up in those on T4 and T3(3.0 to 3.2)

So you might expect those on T3 to feel "better"

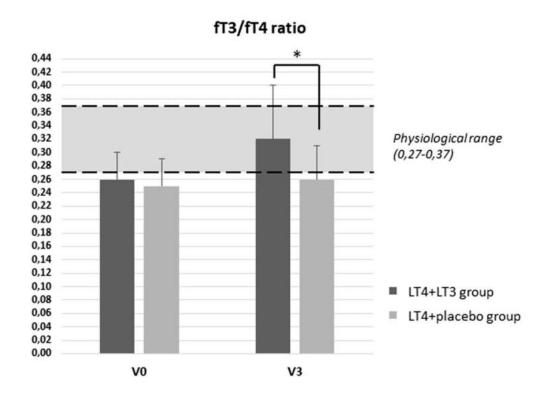
Secondary Outcomes: Changes in tissue markers of peripheral thyroid hormone action

	Visit	Visit	3 (6 months)	Comparison between groups at visit 3			
	LT4 + LT3 gr (n = 71)	oup LT4+pla group (n =		3 LT4 + placebo (n = 58)	Mean difference	P	95% CI
TSH (μIU/mL)	1.4 ± 1.5	1.1 ± 1.2	1.3 ± 2.7	2.6 ± 5.3	-1.3	.08	-2.8, 0.2
fT3 (pg/mL)	3.0 ± 0.3	3.0 ± 0.3	3.2 ± 0.5	2.9 ± 0.4	0.3	.002	0.1, 0.5
fT4 (pg/mL)	11.9 ± 2.2	11.7 ± 1.8	10.4 ± 2.2	11.3 ± 2.0	-0.9	.02	-1.7, -0.2
Total-CH (mg/dL)	206.5 ± 33.3	203.4 ± 48.0	210.0 ± 36.6	219.6 ± 44.7	-9.5	.21	-24.4, 5.3
HDL cholesterol (mg/dL)	52.1 ± 13.2	50.2 ± 13.4	54.9 ± 14.4	54.8 ± 14.0	0.1	.98	-4.7, 5.0
Triglycerides (mg/dL)	108.0 ± 67.2	105.2 ± 79.6	100.9 ± 70.8	110.0 ± 71.2	9.1	.49	25, 16.8
CTX (ng/dL)	9.6 ± 7.1	11.4 ± 8.7	12.3 ± 10.0	11.7 ± 10.1	0.5	.79	-3.2, 4.2
Osteocalcin (ng/mL)	17.3 ± 4.6	17.4 ± 4.7	18.3 ± 4.5	17.0 ± 4.9	1.3	.14	-0.4, 3.0
Bone alkaline phosphatase (µg/L)	11.3 ± 3.9	11.8 ± 3.6	11.7 ± 4.1	11.5 ± 3.6	0.1	.86	-1.3, 1.6

No change in bone turnover

fT3:fT4

At baseline:


- fT3/fT4 below physiological range (0.27-0.37) in both groups
- suggests a suboptimal compensation under LT4 alone, despite mean normal TSH

End of treatment:

- [LT4+placebo]: fT3/fT4 remained low (0.26 ± 0.05)
- [LT4 + LT3]: normalized $(0.32 \pm 0.08]$

P < .001

The physiological range of the fT3/fT4 ratio (in the presence of physiological TSH levels has been proposed in the consensus document on the evidence-based use of levothyroxine/liothyronine combinations in treating hypothyroidism approved by the American Thyroid Association (ATA), British Thyroid Association (BTA), and European Thyroid Association (ETA)

European Journal Endocrinol 2024 190;12-22

Changes in quality of life

- No significant differences in the totalized score in ThyPRO items between groups
- The same results were confirmed, performing separate analysis for males and females
- No significant correlations were found between the scores in any of these items and TSH, fT4, fT3, and fT3/fT4

QoL and symptoms

No difference in anything

	Visit 0 (baseline)		Visit 3 (6 months)		Comparison between groups at		groups at visit 3
	LT4 + LT3 group $(n = 71)$	LT4 + placebo group $(n = 70)$		LT4 + placebo (n = 58)	Mean difference	P	95% CI
TI DDO							
ThyPRO questionnaire scores	0.5	0.5. 44.3	0.2 400	0.0	0.5	=0	44.24
Goiter symptoms	9.5 ± 8.6	9.5 ± 11.3	8.3 ± 10.0	8.9 ± 9.8	-0.5	.78	-4.1, 3.1
Hyperthyroid symptoms	20.2 ± 17.0	20.7 ± 15.2	16.1 ± 12.2	18.5 ± 13.2	-2.4	.31	-7.1, 2.2
Hypothyroid symptoms	21.1 ± 18.1	20.6 ± 17.3	17.3 ± 17.5	17.8 ± 15.0	-0.4	.88	-6.4, 5.5
Eye symptoms	15.7 ± 15.1	11.9 ± 11.8	13.0 ± 13.6	12.2 ± 12.9	0.7	.76	-4.0, 5.6
Tiredness	17.9 ± 17.3	13.6 ± 13.4	14.8 ± 15.5	14.0 ± 14.7	0.8	.76	-4.7, 6.3
Cognitive problems	25.9 ± 22.2	21.7 ± 17.6	19.1 ± 15.2	18.6 ± 16.1	0.5	.85	-5.2, 6.2
Anxiety	26.4 ± 20.4	26.9 ± 19.4	17.3 ± 14.8	21.2 ± 19.9	-3.8	.23	-9.9, 2.2
Depressivity	30.8 ± 18.1	30.7 ± 17.0	24.7 ± 13.9	29.0 ± 20.1	-4.3	.18	-10.6, 1.9
Emotional susceptibility	31.8 ± 18.8	31.4 ± 16.3	25.1 ± 14.8	28.4 ± 17.9	-3.3	.29	-9.2, 2.9
Impaired social life	13.2 ± 16.8	11.8 ± 14.7	7.6 ± 11.5	9.2 ± 14.6	-1.6	.53	-6.8, 3.4
Impaired daily life	13.8 ± 17.6	10.2 ± 12.9	9.2 ± 10.6	11.8 ± 15.2	-2.6	.29	-7.9, 2.2
Impaired sex life	21.7 ± 27.7	21.1 ± 23.2	21.4 ± 25.2	21.1 ± 24.6	0.3	.93	-9.0, 9.7
Cosmetic complaints	18.2 ± 22.7	13.7 ± 16.3	11.6 ± 16.4	9.1 ± 12.2	2.5	.36	-2.8, 7.8
Overall impact	25.0 ± 24.6	17.2 ± 23.9	13.8 ± 20.5	12.7 ± 19.0	1.0	.77	-6.2, 8.4

European Journal Endocrinol 2024 190;12-22

LT4/LT3

• The most frequent adverse effect was TSH reduction below the normal range, despite the dose of combination therapy being meticulously calculated considering the physiological T4/T3 ratio as suggested by the ETA guidelines.

Preference: compared to baseline

- 56% preferred LT4+LT3
- 60% of patients preferred the LT4 + placebo group
- (P = 0.58)

Influence of DIO2 and MCT10 SNPs on experimental treatment outcome

There were no significant genotype-related differences between the LT4 + LT3 group and the LT4 + placebo group for the studied outcomes

Summary

[LT4+LT3] Vs placebo:

- significant reduction of TSH
- significant increase of fT3 and fT3/fT4

No significant difference between groups:

- peripheral tissue markers of thyroid function
- QoL
- BMI

Conclusions

- [LT4 + LT3] therapy at a dose adapted according to TSH-level, with twice-daily LT3, is capable to restore the physiologic fT3/fT4 ratio
- No beneficial effect of combined therapy on SHBG hepatic secretion and bone turnover markers [proxy of the effect of thyroid hormones on liver and bone] nor QOL
- Patients did not prefer LT4 + LT3
- Neither preference nor therapeutic compensation is influenced by DIO2-rs225014 and MCT10-rs17606253

BTA guidelines need updating

ATA and ETA: LT4 therapy of choice in hypothyroidism; do not support combined use due to insufficient evidence from controlled trials, and lack of long term LT3 safety data; and unavailability of LT3 formulations that mirror natural physiology

BTA: L-T4/L-T3 combination therapy in patients with hypothyroidism should not be used routinely.

Consider as an **experimental approach** if persistent complaints despite TSH in ref range

Open and **balanced discussion** of benefits, likely risks of over-replacement and lack of long-term safety data

Discontinue if no improvement after 3 months

CCGs commissioned a T3 withdrawal clinic

- My experience: since 2017.
- Patients are mostly on:
- T4 daily 50mcg to 150mcg
- T3 daily 2.5mcg to 40mcg once, twice or thrice daily
- Armour thyroid
- Ashwaganda
- Turmeric
- Co-enzyme Q

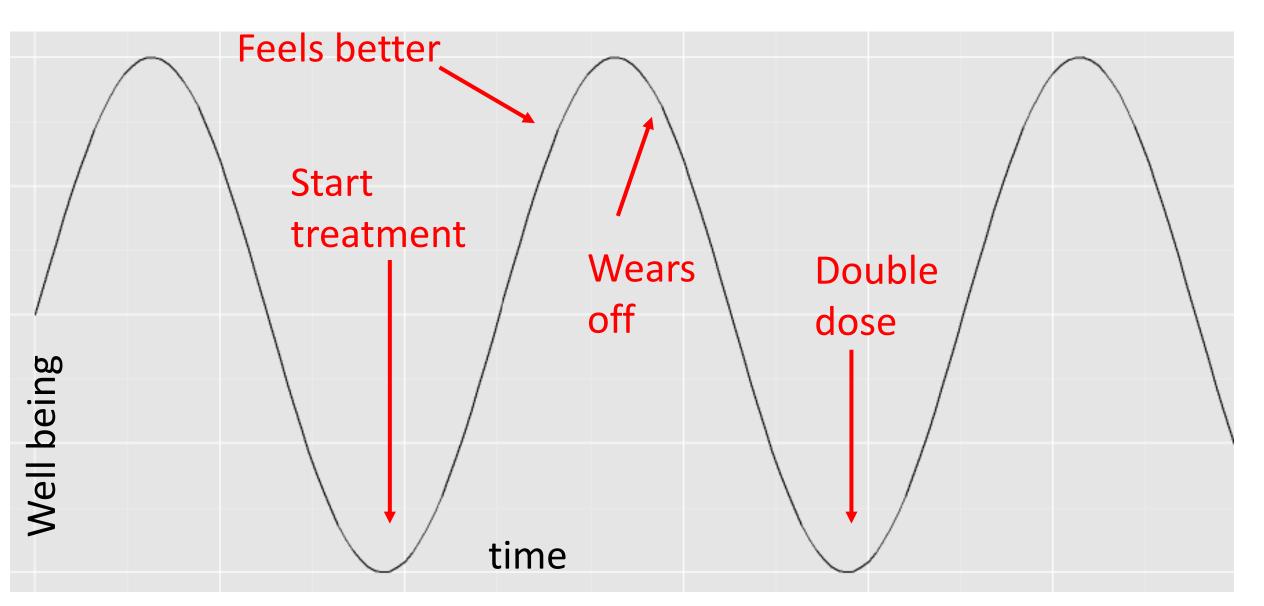
£38.50 (Nov 2022)

 Note that they are still tired despite being on T3 and measure it with a questionnaire

We have a duty to protect vulnerable patients

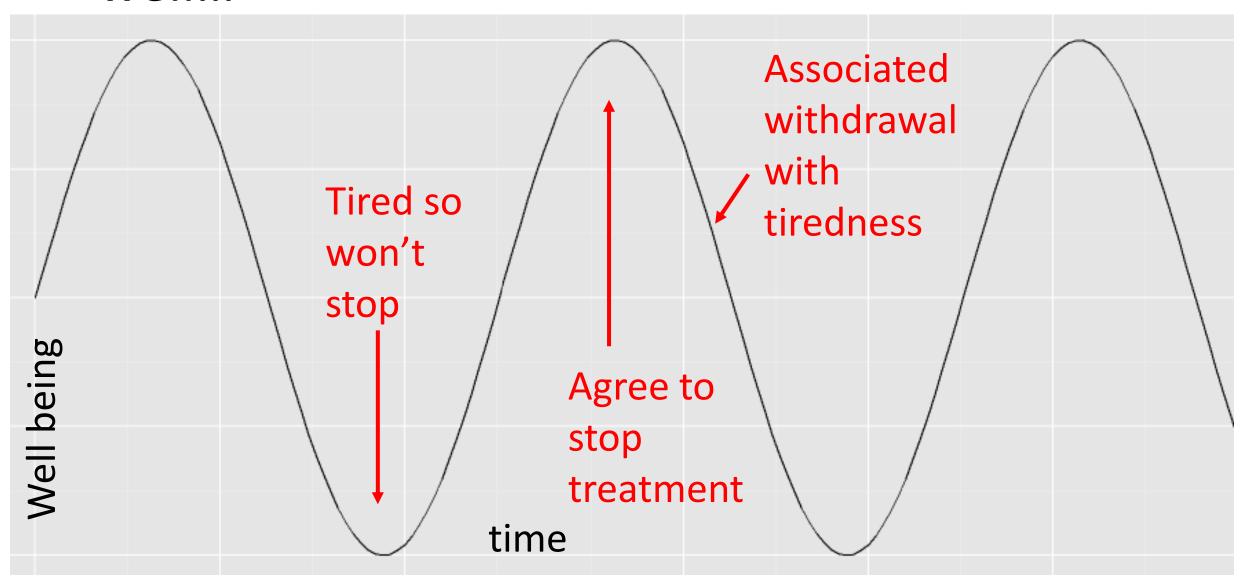
• From the use of expensive and potentially harmful (T3) placebos

- T3
- Vitamin D
- Multivitamins
- Ashwaganda
- Co-enzyme Q
- Turmeric


If you spend NHS resources on unproven treatments, someone else does not get a renal transplant

Endocrinology 2023-2024: What have we learned?

- Guidelines: NICE on AI published last week, August 2024.
- Prednisolone 3mg median replacement for Al June 2023
- Synacthen tests overused: just do ACTH and cortisol
- Crinecerfont for Congenital Adrenal Hyperplasia NEJM June 2024
- AtumeInant for ACTH dependant Cushings
- Levolio study EJE Dec 2023:
- Non-Blind studies all find that T3 with T4 is magic
- Blind studies all fail to find this: placebo effect is very potent



"trial of therapy" causes bias...

- "Trials of therapy" of liothyronine (and other complementary remedies) are subject to a large placebo effect and should not be used.
- There is no genuine evidence of benefit of liothyronine
- "I have the gene doctor": rs225014 SNP = Thr92Ala DIO2 gene: No evidence of genetic variance in need for liothyronine
- Patients with tiredness and depression are vulnerable to being manipulated by private practitioners and websites they need to know that we are on their side
- We must maximise efficiency on drug spend and not use drugs that don't work

Fear of stopping as they only stop when well...

Chronic fatigue and "brain fog"

- Listen to the patient. Determine if they have had some form of psychological trauma in the past.
- Talking therapies?
- Many are already on placebos, co enzyme Q, Ashwaganda, Turmeric
- Nothing wrong with the placebo effect, but if you are paying for treatment, we need evidence of additional benefit on top of placebo.
- Look at history of hypothyroidism. Some have never been diagnosed with actual hypothyroidism, but started with a "trial of thyroxine"
- Even when on all these treatments, they remain tired but they are afraid to reduce any of them

Explain the risks of a suppressed TSH

- Long term risks osteoporosis and AF (many say they don't care)
- Offer regular monitoring (e-mail clinic) as they come off T3
- Give them time to talk
- ? Blind trial: needs a fully on board patient
- Some need an alternative placebo, so find one that is cheap and harmless
- Ask them what they think might work.
- Suggest selenium

Selenium: another placebo?

Ads · Shop Selenium vitamin

**** (54)

0

Holland & Barrett Seleniu... hollandandbarrett... - In stock

Selenium - with Zinc an... amazon.co.uk · In stock

Selenium 200mca - 36... amazon.co.uk - In stock

Selenium + Vitamins A... woodshealth.co... In stock

Vitamin E with Yeast Fre... solgar.co.uk - In stock

Ultra Vitamins A. C. E & S... bodyandfit.com · In stock

Selenium + Vitamin E (... vourhealthbasket.co.uk

Vitamin E Yeast Free S... naturalbalance.co.uk

Selenium | Lamberts He., lambertshealthcare.co.uk

Brazil nuts: a cheap source of selenium

Ads · Shop brazil nuts selenium

Brazil Nuts

£1.45 / 100a

Brazil nuts: Health benefits, nutrition ... nedicalnewstoday.com

7 Proven Health Benefits of Brazil Nuts healthline.com

5 health benefits of Brazil nuts | BBC bbcgoodfood.com

Take 1 brazil nut per day as T3 being withdrawn...

Published: 29 June 2021

Comparative Effectiveness of Levothyroxine, Desiccated Thyroid Extract, and Levothyroxine+Liothyronine in Hypothyroidism

Mohamed K.M. Shakir,^{1,2} Daniel I. Brooks,¹ Elizabeth A. McAninch,³ Tatiana L. Fonseca,⁴ Vinh Q. Mai,^{1,2} Antonio C. Bianco,⁴ and Thanh D. Hoang^{1,2}

¹Walter Reed National Military Medical Center, Bethesda, MD 20889-5600, USA; ²Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; ³Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL 60612, USA; and ⁴Section of Adult and Pediatric Endocrinology, University of Chicago, Chicago, IL 60637, USA

Study design: double blind crossover

All 75 patients had all treatments in random order for 22 weeks each

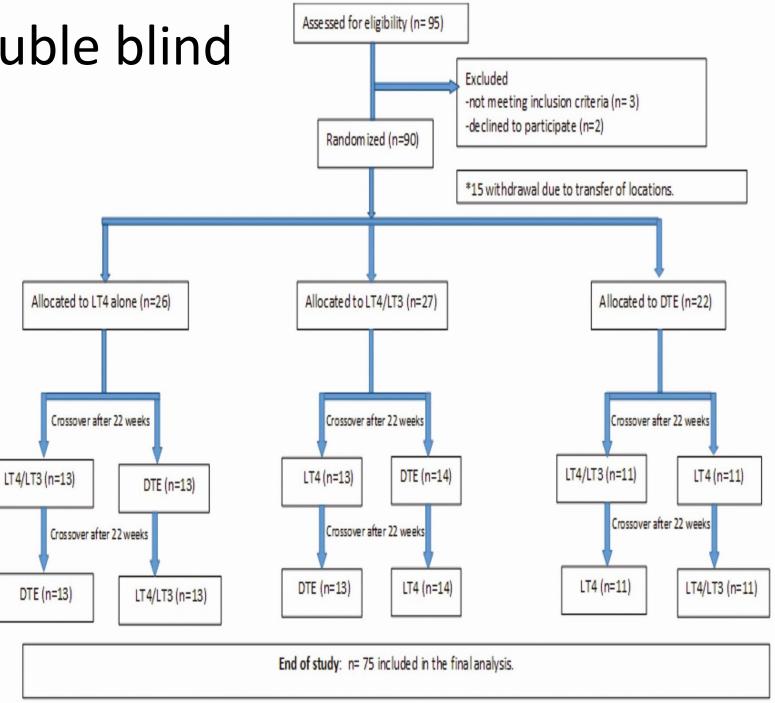


Table 4. Primary and secondary outcomes

Parameters	LT4	DTE	LT4 + LT3	P value	
	(N = 75)	(N = 75)	(N = 75)		
Primary outcomes					
Quality of life and cognition					
TSQ-36	15.9 (7.49)	14.5 (8.22)	14.9 (6.67)	0.357	
GHQ-12	11.9 (5.13)	11.7 (6.16)	11.6 (4.83)	0.891	
BDI	7.15 (7.11)	7.09 (8.55)	7.33 (7.67)	0.947	
AMI	121 (12.8)	121 (14.7)	120 (14.0)	0.825	
VMI	80.4 (12.1)	79.8 (8.06)	81.0 (11.3)	0.518	
VWMI	116 (14.3)	115 (18.2)	117 (17.2)	0.461	
IMI	99.7 (10.7)	97.9 (15.4)	98.0 (15.2)	0.537	
DMI	101 (12.0)	101 (10.8)	100 (16.3)	0.827	
Secondary outcomes					
Thyroid function tests					
T3 (60-181 ng/dL)	103 (22.1)	155 (48.7)	132 (33.2)	< 0.001	
T3 resin	28.1 (3.48)	25.8 (4.01)	26.6 (3.95)	< 0.001	
T3 reverse	20.6 (5.60)	14.4 (5.31)	16.7 (5.02)	< 0.001	
TSH	1.63 (1.28)	2.34 (1.48)	1.76 (1.13)	< 0.001	
Total T4	8.46 (2.14)	5.62 (1.38)	6.92 (1.62)	< 0.001	
Free T4	1.44 (0.358)	0.980 (0.673)	1.21 (0.532)	< 0.001	
Free T4 direct dialysis	1.30 (0.292)	0.828 (0.293)	1.06 (0.286)	< 0.001	
Total T4/T3 ratio	82.1(9.7)	36.2(2.8)	52.4 (4.9)	< 0.001	
Metabolism					
Weight (lbs)	181 (38.7)	180 (40.0)	178 (43.6)	0.278	
Total cholesterol	195 (42.5)	196 (37.1)	195 (38.2)	0.85	
LDL cholesterol	130 (35.3)	127 (33.6)	126 (35.8)	0.31	
HDL cholesterol	59.7 (15.6)	60.5 (18.9)	60.4 (17.8)	0.773	
Triglyceride	109 (74.8)	109 (65.7)	102 (63.5)	0.411	
SHBG	72.3 (48.1)	69.5 (37.9)	75.0 (45.7)	0.08	
Leptin	22.1 (17.9)	21.5 (17.7)	22.2 (18.6)	0.826	

T3 no benefit in a blind study

 But what if you subanalyse those who are particularly tired when they were on T4 alone?

And is there a link of that tiredness to DIO2 gene?

owilioaded Iloili liths://acadelliic.odp.colli/jc

Table 8. Patients' characteristics presented after the group was broken down by TSQ-36 scores while on therapy with LT4 (L, M, or H)

Parameters	L 1-13 (N = 30)	M = 14-21 $(N = 25)$	H $22-33$ (N = 20)	P value	
Age	49.8 (11.1)	49.7 (8.29)	51.0 (7.64)	0.877	
Sex					
Female	24 (80.0%)	18 (72.0%)	16 (80.0%)	0.779	
Male	6 (20.0%)	7 (28.0%)	4 (20.0%)		
Genotype_group.y					
Heterozygous	14 (46.7%)	15 (60.0%)	12 (60.0%)	0.679	
Ala92-DIO2	3 (10.0%)	3 (12.0%)	3 (15.0%) Howev	er tired, no	
Thr92-DIO2	13 (43.3%)	7 (28.0%)	^{5 (25.0%)} link to	gene	
Etiology				<u> </u>	
Autoimmune	19 (63.3%)	16 (64.0%)	11 (55.0%)	0.795	
Nonautoimmune	11 (36.7%)	9 (36.0%)	9 (45.0%)		
Preference					
LT4	12 (40.0%)	1 (4.0%)	2 (10.0%)	0.00892	
DTE	9 (30.0%)	13 (52.0%)	7 (35.0%)		
LT4 + LT3	5 (16.7%)	8 (32.0%)	10 (50.0%)		
No preference	4 (13.3%)	3 (12.0%)	1 (5.0%)		
Preference for LT4					
Yes	12 (40.0%)	1 (4.0%)	2 (10.0%)	0.0017	
No	18 (60.0%)	24 (96.0%)	18 (90.0%)		
TSH (0.27-4.68 mU/µL)	1.93 (1.31)	1.54 (1.23)	1.32 (1.24)	0.23	
T4 (4.5-12 mcg/dL)	8.20 (2.36)	8.77 (1.34)	8.45 (2.60)	0.63	
T3 (60-181 ng/dL)	102 (26.9)	103 (14.5)	105 (23.0)	0.896	

We have a duty to protect vulnerable patients

• From the use of expensive and potentially harmful (T3) placebos

- T3
- Vitamin D
- Multivitamins
- Ashwaganda
- Co-enzyme Q
- Turmeric

If you spend NHS resources on unproven treatments, someone else does not get a renal transplant

Protocol to reduce DTE or T3...

Week	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
0	60	60	60	60	60	60	60
1	60	60	60	30	60	60	60
2	60	30	60	60	30	60	60
3	60	30	60	30	60	30	60
4	30	60	30	60	30	60	30
5	30	60	30	30	60	30	30
6	30	30	30	60	30	30	30
7	30	30	30	30	30	30	30
8	30	30	30	0	30	30	30
9	30	0	30	30	0	30	30
10	30	0	30	0	30	0	30
11	0	30	0	30	0	30	0
12	0	30	0	0	30	0	0
13	0	0	0	30	0	0	0
14	0	0	0	0	0	0	0

published: 22 February 2022 doi: 10.3389/fendo.2022.816566

Effect of Liothyronine Treatment on Quality of Life in Female Hypothyroid Patients With Residual Symptoms on Levothyroxine Therapy: A Randomized Crossover Study

Not blind: Fatigue questionnaire in a Norwegian population Daily T4 or tds T3

	Baseline (n = 59)	On LT4 (n = 49)		On LT3 (n = 48)		LT4 vs. LT3 (n = 47)	
	Score	Change from baseline	P value	Change from baseline	P value	Change from LT4 to LT3	P value
Physical fatigue	12.2 ± 3.9	-0.5 ± 4.7	0.438	-4.0 ± 6.2	<0.001	-3.2 ± 6.1	0.001
Mental fatigue	6.6 ± 2.4	-0.4 ± 2.4	0.203	-1.8 ± 2.9	< 0.001	-1.2 ± 2.7	0.004
Total fatigue	18.9 ± 5.8	-1 ± 6.6	0.303	-5.8 ± 8.7	< 0.001	-4.4 ± 8.3	0.001

Significant placebo effect

- We identified the homozygous variant of the **D2-Thr92Ala**
- polymorphism in only 6.8% of our patients. **Paradoxically**, the only significant difference we found between the presence of D2-Thr92Ala polymorphism and a non-Thr92Ala polymorphism in the deiodinase 2 gene, was a **lower score in overall QoL on LT4 treatment**, **indicating improved QoL**. This result is in contrast to the hypothesis that this polymorphism may impair the effect of deiodinase 2 and reduce the conversion of T4 to T3 at the cellular level.
- Five patients on LT3 dropped out of the study due to side effects, which may indicate that some patients do not seem to tolerate LT3 monotherapy. Based on our results, the D2-Thr92Ala polymorphism was not associated with reduced thyroid-specific QoL or treatment effects.

ORIGINAL RESEARCH

published: 22 February 2022 doi: 10.3389/fendo.2022.816566

Predatory journal will publish any frontiers in Endocrinology old rubbish...

Effect of Liothyronine Treatment on Quality of Life in Female Hypothyroid Patients With Residual Symptoms on Levothyroxine Therapy: A Randomized Crossover Study

Not blind studies are misleading...

doi: 10.3389/fendo.2022.816566

Summary

- No evidence of benefit of Liothyronine over thyroxine
- Profound and prolonged placebo effect
- Money spent on liothyronine could be used to fund the nurses wage increase. Every time you sign a prescription for T3, you condemn another nurse to a wage freeze
- Vulnerable patients are being taken advantage of.
- "Trials of therapy" are flawed.
- Slow weaning and an explanation of the placebo effect and the risks

Endocrinology 2023-2024: What have we learned?

- Guidelines: NICE on AI published last week, August 2024.
- Prednisolone 3mg median replacement for Al June 2023
- Synacthen tests overused: just do ACTH and cortisol
- Crinecerfont for Congenital Adrenal Hyperplasia NEJM June 2024
- AtumeInant for ACTH dependant Cushings
- Levolio study EJE Dec 2023:
- Non-Blind studies all find that T3 with T4 is magic
- Blind studies all fail to find this: placebo effect is very potent

